An orthogonal family of polynomials on the generalized unit disk and ladder representations of
Author:
John D. Lorch
Journal:
Proc. Amer. Math. Soc. 126 (1998), 37553762
MSC (1991):
Primary 22E45, 22E70; Secondary 32L25, 32M15, 58G05, 81R05, 81R25
MathSciNet review:
1458255
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Inner product structures are given for realizations of the positive spin ladder representations over the generalized unit disk . This is accomplished by combining previous results of the author with the construction of a family of holomorphic polynomials on . These polynomials, which play a crucial role in the present work, are shown to be orthogonal with respect to Lebesgue measure, and their norms are computed. The orthogonal family is then used to invert a certain integral transform, giving the desired inner product structures.
 1.
Michael
Atiyah and Wilfried
Schmid, A geometric construction of the discrete series for
semisimple Lie groups, Invent. Math. 42 (1977),
1–62. MR
0463358 (57 #3310)
 2.
V.
Bargmann, On a Hilbert space of analytic functions and an
associated integral transform, Comm. Pure Appl. Math.
14 (1961), 187–214. MR 0157250
(28 #486)
 3.
T.
S. Chihara, An introduction to orthogonal polynomials, Gordon
and Breach Science Publishers, New YorkLondonParis, 1978. Mathematics and
its Applications, Vol. 13. MR 0481884
(58 #1979)
 4.
Mark
G. Davidson, The harmonic representation of
𝑈(𝑝,𝑞) and its connection with the generalized unit
disk, Pacific J. Math. 129 (1987), no. 1,
33–55. MR
901255 (89c:22021)
 5.
Mark
G. Davidson, Thomas
J. Enright, and Ronald
J. Stanke, Differential operators and highest weight
representations, Mem. Amer. Math. Soc. 94 (1991),
no. 455, iv+102. MR 1081660
(92c:22034), http://dx.doi.org/10.1090/memo/0455
 6.
J.
Faraut and A.
Korányi, Function spaces and reproducing kernels on bounded
symmetric domains, J. Funct. Anal. 88 (1990),
no. 1, 64–89. MR 1033914
(90m:32049), http://dx.doi.org/10.1016/00221236(90)901196
 7.
HarishChandra,
Representations of semisimple Lie groups. V, Amer. J. Math.
78 (1956), 1–41. MR 0082055
(18,490c)
 8.
Sigurdur
Helgason, Groups and geometric analysis, Pure and Applied
Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984.
Integral geometry, invariant differential operators, and spherical
functions. MR
754767 (86c:22017)
 9.
L.
K. Hua, Harmonic analysis of functions of several complex variables
in the classical domains, Translated from the Russian by Leo Ebner and
Adam Korányi, American Mathematical Society, Providence, R.I., 1963.
MR
0171936 (30 #2162)
 10.
J. Lorch, Unitary structures for ladder representations of , Ph.D. thesis, Oklahoma State University, 1995.
 11.
John
D. Lorch and Lisa
A. Mantini, Inversion of an integral transform and ladder
representations of 𝑈(1,𝑞), Representation theory and
harmonic analysis (Cincinnati, OH, 1994), Contemp. Math., vol. 191,
Amer. Math. Soc., Providence, RI, 1995, pp. 117–138. MR 1365539
(96m:22022), http://dx.doi.org/10.1090/conm/191/02332
 12.
J. Lorch, An integral transform and ladder representations of , Pacific J. Math., in press.
 13.
Lisa
A. Mantini, An integral transform in 𝐿²cohomology for
the ladder representations of 𝑈(𝑝,𝑞), J.
Funct. Anal. 60 (1985), no. 2, 211–242. MR 777237
(87a:22029), http://dx.doi.org/10.1016/00221236(85)900515
 14.
Lisa
A. Mantini, An 𝐿²cohomology construction of negative
spin mass zero equations for 𝑈(𝑝,𝑞), J. Math.
Anal. Appl. 136 (1988), no. 2, 419–449. MR 972147
(90c:22040), http://dx.doi.org/10.1016/0022247X(88)900959
 15.
M.
S. Narasimhan and K.
Okamoto, An analogue of the BorelWeilBott theorem for hermitian
symmetric pairs of noncompact type, Ann. of Math. (2)
91 (1970), 486–511. MR 0274657
(43 #419)
 16.
R.
Parthasarathy, Dirac operator and the discrete series, Ann. of
Math. (2) 96 (1972), 1–30. MR 0318398
(47 #6945)
 17.
I.
I. PyateskiiShapiro, Automorphic functions and the geometry of
classical domains, Translated from the Russian. Mathematics and Its
Applications, Vol. 8, Gordon and Breach Science Publishers, New
YorkLondonParis, 1969. MR 0252690
(40 #5908)
 18.
Walter
Rudin, Function theory in the unit ball of 𝐶ⁿ,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science], vol. 241, SpringerVerlag, New YorkBerlin,
1980. MR
601594 (82i:32002)
 19.
Gabor
Szegö, Orthogonal Polynomials, American Mathematical
Society, New York, 1939. American Mathematical Society Colloquium
Publications, v. 23. MR 0000077
(1,14b)
 1.
 M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 162. MR 57:3310
 2.
 V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform Part I, J. Funct. Anal. 14 (1961), 187214. MR 28:486
 3.
 T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. MR 58:1979
 4.
 M. Davidson, The harmonic representation of and its connection with the generalized unit disk, Pacific J. Math. 129 (1987), 3355. MR 89c:22021
 5.
 M. Davidson, T. Enright, and R. Stanke, Differential operators and highest weight representations, Mem. Amer. Math. Soc. 455 (1991), 1117. MR 92c:22034
 6.
 J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 6489. MR 90m:32049
 7.
 HarishChandra, Representations of semisimple Lie groups V, Amer. J. Math. 78 (1956), 141. MR 18:490c
 8.
 S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, 1984. MR 86c:22017
 9.
 L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables, American Mathematical Society, Providence, 1963. MR 30:2162
 10.
 J. Lorch, Unitary structures for ladder representations of , Ph.D. thesis, Oklahoma State University, 1995.
 11.
 J. Lorch and L. Mantini, Inversion of an integral transform and ladder representations of , Representation Theory and Harmonic Analysis: A Conference in Honor of Ray Kunze (Tuong TonThat, ed.), Comtemp. Math. 191 (1995), 117137. MR 96m:22022
 12.
 J. Lorch, An integral transform and ladder representations of , Pacific J. Math., in press.
 13.
 L. Mantini, An integral transform in cohomology for the ladder representations of , J. Funct. Anal. 60 (1985), 211241. MR 87a:22029
 14.
 L. Mantini, An cohomology construction of negative spin mass zero equations for , J. Math. Anal. Appl. 136 (1988), 419449. MR 90c:22040
 15.
 M. Narasimhan and K. Okamoto, An analog of the BorelWeilBott theorem for Hermitian symmetric pairs of noncompact type, Ann. of Math. 91 (1970), 486511. MR 43:419
 16.
 R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 130. MR 47:6945
 17.
 I.I. PiatetskiiShapiro, Automorphic Functions and the Geometry of the Classical Domains, Gordon and Breach, New York, 1969. MR 40:5908
 18.
 W. Rudin, Function Theory in the Unit Ball of , SpringerVerlag, New York, 1980. MR 82i:32002
 19.
 G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, 1939. MR 1:14b
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
22E45,
22E70,
32L25,
32M15,
58G05,
81R05,
81R25
Retrieve articles in all journals
with MSC (1991):
22E45,
22E70,
32L25,
32M15,
58G05,
81R05,
81R25
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993998045067
PII:
S 00029939(98)045067
Keywords:
Ladder representations,
unitary structures,
Penrose transform,
generalized unit disk
Received by editor(s):
January 2, 1997
Received by editor(s) in revised form:
April 28, 1997
Communicated by:
Roe Goodman
Article copyright:
© Copyright 1998
American Mathematical Society
