A maximum principle for -harmonic maps

with finite energy

Author:
Kensho Takegoshi

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3749-3753

MSC (1991):
Primary 58D15, 58E20

DOI:
https://doi.org/10.1090/S0002-9939-98-04609-7

MathSciNet review:
1469437

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show a maximum principle for -harmonic maps with -finite energy. As an application we can generalize a non-existence theorem for harmonic maps with finite Dirichlet integral by Schoen and Yau to those maps.

**[C]**Cheng,S.Y.,*Liouville theorem for harmonic maps*, Proceedings of Symposia in Pure Mathematics**36**(1980), 147-151. MR**81i:58021****[C-Y]**Cheng,S.Y., Yau,S.T.,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), 333-354. MR**52:6608****[E-L]**Eells,J., Lemaire,L.,*A report on harmonic maps*, Bull. London Math. Soc.**10**(1978), 1-68. MR**82b:58033****[G-H]**Goldberg,S.I., Har'el,Z.,*A general Schwarz lemma for Riemannian manifolds*, Bull. Soc. Math. Grèce**18**(1977), 141-148. MR**80c:53055****[L-S]**Li,P., Schoen,R.,*and mean value properties of subharmonic functions on Riemannian manifolds*, Acta Math.**153**(1984), 279-301. MR**86j:58147****[N]**Nakauchi,N.,*A Liouville type theorem for -harmonic maps*, preprint.**[Sc-Y]**Schoen,R., Yau,S.T.,*Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature*, Comment. Math. Helv.**51**(1976), 333-341. MR**55:11302****[Sh]**Shen,C-L.,*A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic maps*, J. Reine Angew. Math.**348**(1984), 23-33. MR**85i:58044****[T]**Takegoshi,K.,*A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds*, to appear in Nagoya Mathematical Journal.**[Y-1]**Yau,S.T.,*Some function theoretic properties of complete Riemannian manifolds and their applications to geometry*, Indiana Univ. Math. J.**25**(1976), 656-670. MR**54:5502****[Y-2]**Yau,S.T.,*A general Schwarz lemma for Kähler manifolds*, Amer. J. Math.**100**(1978), 197-203. MR**58:6370**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58D15,
58E20

Retrieve articles in all journals with MSC (1991): 58D15, 58E20

Additional Information

**Kensho Takegoshi**

Affiliation:
Department of Mathematics, Graduate School of Science, Machikaneyama-cho 1-16, Toyonaka-shi Osaka, 560 Japan

Email:
kensho@math.wani.osaka-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-98-04609-7

Received by editor(s):
April 21, 1997

Communicated by:
Peter Li

Article copyright:
© Copyright 1998
American Mathematical Society