CYCLE RANK OF LYAPUNOV GRAPHS AND THE GENERA OF MANIFOLDS

R. N. CRUZ AND K. A. DE REZENDE

(Communicated by Linda Keen)

Abstract. We show that the cycle-rank \(r(L) \) of a Lyapunov graph \(L \) on a manifold \(M \) satisfies: \(r(L) \leq g(M) \), where \(g(M) \) is the genus of \(M \). This generalizes a theorem of Franks. We also show that given any integer \(r \) with \(0 \leq r \leq g(M) \), \(r = r(L) \) for some Lyapunov graph \(L \) on \(M \), \(\dim M > 2 \).

1. Introduction

Let \(M \) be a smooth, compact, connected \(n \)-manifold with boundary. The genus of \(M \), \(g(M) \), [1] is the maximal number of mutually disjoint, smooth, compact, connected, two-sided codimension one submanifolds that do not disconnect \(M \). This definition coincides with the classical definition of genus of a compact orientable 2-manifold.

Let \(f : M \to \mathbb{R} \) be a Lyapunov function associated to a flow and define the following equivalence relation on \(M \): \(x \sim_f y \) if and only if \(x \) and \(y \) belong to the same connected component of a level set of \(f \). We call \(M/\sim_f \) a Lyapunov graph. The cycle rank of a graph is the maximum number of edges that can be removed without disconnecting the graph.

We will generalize the following theorem of Franks [4].

Theorem 1.1. Let \(\varphi_t \) be a smooth flow on a closed, connected \(n \)-manifold \(M \) with Lyapunov function \(f \). Let \(L \) be the Lyapunov graph of \(f \). Assume that \(L \) is finite. If \(M \) is orientable and \(\beta_1(M) = 0 \) (the first Betti number), then the cycle-rank of \(L \), \(r(L) \), is 0. Since \(L \) is connected, this implies that \(L \) is a tree.

We will show that \(r(L) \leq g(M) \) if \(L \) is a Lyapunov graph of a Lyapunov function \(f \) associated to a smooth flow \(\varphi_t \) on \(M \). As a consequence of Corollary 2.4, which asserts that \(\beta_1(M) = 0 \) if and only if \(g(M) = 0 \), we prove Theorem 1.1 without the assumption: \(M \) orientable. We will also prove that given an integer \(r, 0 \leq r \leq g(M) \), there exists a Lyapunov graph \(L \) associated to a Morse function \(f \) with gradient flow \(\varphi_t \) on \(M \) such that \(r(L) = r \).

Received by the editors January 22, 1997.

1991 Mathematics Subject Classification. Primary 58F09, 58F25; Secondary 57R65.

The second author was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico under Grant 300072/90.2 and Fundação de Amparo à Pesquisa do Estado de São Paulo.
2. The genus of a manifold

The genus of a group \(\pi, g(\pi) \), is the maximal rank \(r \) of a free group \(F_r \) (\(r \) is the number of generators) such that there exists an epimorphism \(\pi \to F_r \). If \(\pi \) is finitely presented, \(g(\pi) < \infty \). In [1] Cornea proves the following theorem whose proof we sketch in Appendix A:

Theorem 2.1. Let \(M \) be a smooth compact connected \(n \)-manifold with boundary. Then

1. \(g(M) \leq g(\pi_1 M) \),
2. \(g(M) = g(\pi_1 M) \) if \(\partial M = \emptyset \).

By using the fact that a subgroup of a free group is free, Cornea [1] also proves the following theorem:

Theorem 2.2. Let \(\pi_1, \pi_2 \) be two finitely presented groups. Then

\[g(\pi_1 * \pi_2) = g(\pi_1) + g(\pi_2) \]

In [1], Cornea has the following result which we will prove here using \(\mathbb{Z} \) coefficients.

Proposition 2.3. Let \(M \) be a smooth, connected closed \(n \)-manifold. Then

1. \(g(M) \leq \beta_1(M) \) (the first Betti number),
2. \(\beta_1(M) > 0 \Rightarrow g(M) > 0 \).

Proof. There is an epimorphism \(h : \pi_1 M \to F_g \), the free group on \(g = g(M) = g(\pi_1 M) \) generators. We have the following commutative diagram:

\[
\begin{array}{ccc}
\pi_1(M) & \xrightarrow{h} & F_g \\
\downarrow & & \downarrow \\
H_1(M; \mathbb{Z}) & \xrightarrow{h_{ab}} & \mathbb{Z}^g
\end{array}
\]

where the vertical maps are abelianization homomorphisms and \(h_{ab} \) is \(h \) abelianized. The homomorphism \(h_{ab} \) is surjective because the other homomorphisms above are. Thus, result 1. follows.

If \(\beta_1(M) > 0 \), then \(H_1(M; \mathbb{Z}) \) contains a direct summand isomorphic to \(\mathbb{Z} \). In particular, there is an epimorphism \(H_1(M; \mathbb{Z}) \to \mathbb{Z} \). Composing this epimorphism with the abelianization \(\pi_1(M) \to H_1(M; \mathbb{Z}) \) gives an epimorphism \(\pi_1(M) \to \mathbb{Z} \). Thus, \(g(M) \geq 1 \).

Corollary 2.4. Let \(M \) be a smooth, connected closed \(n \)-manifold. Then, \(g(M) = 0 \) if and only if \(\beta_1(M) = 0 \).

Proof. Straightforward.

Example 2.5. Let \(\pi \) be an abelian group. Given an epimorphism \(\pi \to F_r \), we conclude \(r = 0 \) or 1. Therefore, \(g(\pi) = 0 \) or 1. By the Structure Theorem for finitely generated abelian groups it follows that \(g(\pi) = 0 \) if and only if \(\pi \) is finite. Note that \(g(\mathbb{Z}^n) = 1 \). Thus, we have the following examples:

1. \(T^n = S^1 \times \ldots \times S^1 \) (\(n \) times) \(g(T^n) = 1 \).
2. \(g((S^1 \times S^1 \times S^2) \# (S^1 \times S^3) \# T^4) = 3 \).
3. \(g((T^3 \times S^2 \times S^3) \# T^8 \# (T^6 \times S^2) \# (S^2 \times S^6)) = 3 \).
3. Dynamics and the genus

Proposition 3.1. Let M be a connected, closed smooth n-manifold. Let φ_t be a smooth flow on M with associated Lyapunov function f. Let L be a Lyapunov graph associated to f. Assume that L is finite. Then

$$r(L) \leq g(M).$$

Proof. Set $r = r(L)$. Let $T \subset L$ be a maximal tree and $q : M \to L$ the quotient map. $L - T$ is the disjoint union of r edges e_1, \ldots, e_r. By Sard’s theorem it is possible to take points $x_1, \ldots, x_r, x_1 \in e_1, \ldots, x_r \in e_r$ with the following properties: $q^{-1}(x_1), \ldots, q^{-1}(x_r)$ are submanifolds. These submanifolds are mutually disjoint, smooth, closed, connected, two-sided, codimension one submanifolds that do not disconnect M. The result follows. \hfill \square

Proposition 3.1 together with Corollary 2.4 provide a proof of Theorem 1.1 without the orientability assumption.

Example 3.2. Let n be any large integer > 1, $M = T^n$ and L be the Lyapunov graph of a Lyapunov function f associated to a smooth flow φ_t on T^n. Proposition 3.1 implies that $r(L) \leq 1$. Thus, L can have at most one cycle! However, the first Betti number of T^n increases with n, therefore, genus, and not the first Betti number, is the right tool to study the cycle-rank of Lyapunov graphs.

Theorem 3.3. Let M be a smooth, connected, closed n-manifold, $n > 2$. Let r be an integer with $0 \leq r \leq g(M)$. Then, there is a gradient flow φ_t on M with associated Morse function f such that $r(L) = r, L$ the Lyapunov graph of f. In particular, $g(M)$ is the largest cycle-rank for Lyapunov graphs on M.

The fact that this theorem does not hold for $n = 2$ is shown in [3].

Before we proceed with the proof, we will define a Lyapunov graph associated to a smooth flow on a smooth compact n-manifold with boundary W. Let φ_t be a smooth flow on W with associated Lyapunov function \hat{f}. Let $\partial_t W$ be the component of ∂W for which $\frac{\partial}{\partial t} \varphi_t$ points inward. Similarly, $\partial - W$ is the component of ∂W for which $\frac{\partial}{\partial t} \varphi_t$ points outward. The Lyapunov graph \hat{L} of \hat{f} is defined exactly as in [4]. However, since $\partial W \neq \emptyset$, the vertices correspond to components of the chain recurrent of φ_t together with the boundary components of W. Vertices that correspond to boundary components will be referred to as boundary vertices. In what follows we assume \hat{L} is finite. We will need a lemma.

Lemma 3.4. Let W be as above with $n > 2$. Assume that \hat{f} is the Morse function associated to an ordered handle decomposition [5] \mathcal{H} of W. In addition, assume $\partial_+ W = \emptyset$ and \mathcal{H} contains a single n-handle (equivalently we could assume $\partial_- W = \emptyset$ and \mathcal{H} contains a single 0-handle). Then, \hat{L} is a tree.

Proof (of Theorem 3.3). Let $N_1, \ldots, N_r, r \geq 1$, be mutually disjoint, smooth, closed, connected, two-sided codimension one submanifolds that do not disconnect M. Let T_1, \ldots, T_r be mutually disjoint closed tubular neighborhoods of N_1, \ldots, N_r respectively. Set $W = M - \bigcup_{i=1}^r \operatorname{int} T_i$. See Figure 1. As W is connected, we can choose an ordered handle decomposition $\tilde{\mathcal{H}}$ for $(W; \partial W, \emptyset)$ containing a single n-handle [5]. Choose handle decompositions \mathcal{H}_i for $(T_i; \emptyset, \partial T_i)$ which are ordered and
contains just one 0-handle, $i = 1, \ldots, r$. Let $f_i, i = 1, \ldots, r$, be Morse functions associated to these handle decompositions H_i.

Define a handle decomposition H for M as follows: $H = \bigcup_{i=1}^r H_i \cup \tilde{H}$. The order of attachment is: attach the handles of H_1 respecting the order of an attachment of H_1. Do the same for $H_2, \ldots, H_r, \tilde{H}$. Let f be the Morse function that corresponds to H, such that $f \bigg|_W = \tilde{f}$ and $f \bigg|_{T_i} = f_i, i = 1, \ldots, r$. Let L be a Lyapunov graph of f and \tilde{L}, L_i be Lyapunov graphs of $\tilde{f}, f_i, i = 1, \ldots, r$. L is obtained by “glueing” \tilde{L} and $L_i, i = 1, \ldots, r$, along boundary vertices that correspond to the $2r$ components of ∂W and to the two components of $\partial T_i, i = 1, \ldots, r$. Since ∂W has $2r$ components and \tilde{H} is an ordered handle decomposition with one n-handle, then by Lemma 3.4 the corresponding graph \tilde{L} is a tree as shown in Figure 2. Similarly, ∂T_i has 2 components and the handle decomposition H_i is ordered and has one 0-handle. Hence, by Lemma 3.4 the corresponding graph L_i is a tree as shown below in Figure 2. The “glueing” of the graphs will be performed so that the edge labellings incident to a pair of boundary vertices that will be identified match. Furthermore, a pair of identified boundary vertices becomes an edge point (more precisely, if e_-, e_+ are edges incident to a boundary vertex $v, e = e_- \cup \{v\} \cup e_+$ is the edge in L for which v is an edge point). Hence, $r(L) = r$. We now prove the case $r = 0$. In view of a result of Smale’s [6] we can take an ordered Morse function f on M with one index 0 singularity and one index n singularity. By results in [2] as summarized in Table 1, all level sets are connected and the graph L associated to the flow is linear. Hence $r(L) = 0$.

Proof (of Lemma 3.4). Assume $\partial_+ W = \emptyset$. The case $\partial_- W = \emptyset$ is analogous. L is oriented by the direction of flow lines. Let v be a vertex of L. Denote by $e^-(v), e^+(v)$ the number of outgoing, ingoing edges of v, respectively. If v corresponds to a component of $\partial_+ W$, then $e^-(v) = 0, e^+(v) = 1$. If v corresponds to an index i singularity of φ_t, we set $\text{ind } v = i$ (the index of v). By Corollary 3.1 in [2] we have: L is path-connected because W is. Let v_n be the unique vertex with $\text{ind } v_n = n$. Since we are assuming an ordered handle decomposition, this implies that $e^+(v) = 1$ if v is a vertex with $\text{ind } v = n - 1$.

![Figure 1. Decomposition of M.](image)
Figure 2. Lyapunov graphs \tilde{L} and L_i. Here, "•" indicates a vertex labelled with the index of a singularity of φ_t and "O" indicates a boundary vertex.

Table 1

<table>
<thead>
<tr>
<th>ind v</th>
<th>0</th>
<th>1</th>
<th>$1 < i < n - 1$</th>
<th>$n - 1$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^-(v)$</td>
<td>0</td>
<td>1 or 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$e^+(v)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 or 2</td>
<td>0</td>
</tr>
</tbody>
</table>

Otherwise, if $e^+(v) = 2$ we would necessarily have to attach an index $n - 1$ handle before attaching an index 1 handle. The orientation of L is equivalent to a partial order relation for its vertices such that $v \leq u$ if $\partial e = \{v, u\}$, e an edge which is ingoing for v (equivalently e is outgoing for u). We define $\partial^+ e = v$ and $\partial^- e = u$.

Let V, E be the vertices and edges of L respectively. By the previous table and paragraph, $e^+(v) = 1$ for all $v \in V - \{v_n\}$. This fact allows us to define a bijection $F: V - \{v_n\} \rightarrow E$ as follows: for $v \in V - \{v_n\}$, $F(v) = e$ where $\partial^+ e = v$, i.e., e is the edge ingoing for v. Conclusion: the Euler characteristic of L is one. Thus, L is a tree.

Appendix A

We sketch here a proof of the following theorem of Cornea’s [1]:

Theorem 3.5. Let M be a smooth compact connected n-manifold with boundary. Then

1. $g(M) \leq g(\pi_1 M)$,
2. $g(M) = g(\pi_1 M)$ if $\partial M = \emptyset$.

Proof. (Sketch) Part 1. is proved as follows. Let $N_1, \ldots, N_r, r \leq g(M)$ (at this point we do not know that $g(M) < \infty$), be mutually disjoint, smooth, compact, connected, two-sided codimension one submanifolds that do not disconnect M. Let T_1, \ldots, T_r be mutually disjoint closed tubular neighborhoods of N_1, \ldots, N_r respectively. There are diffeomorphisms of pairs $\varphi_i : (T_i, N_i) \rightarrow (N_i \times D^1, N_i \times D^1)$.
\{0\}, i = 1, \ldots, r. Collapsing \(W = M - \bigcup_{i=1}^{r} T_i \) to a point and \(T_i \) to \(\{x_i\} \times D^1, x_i \in N_i, i = 1, \ldots, r \), defines an equivalence relation \(\sim \) on \(M \). Hence \(M/\sim = B_r \), a bouquet of \(r \) circles. Let \(c: M \to B_r \) be the quotient map. The circles of \(B_r \) are \(c(\varphi_i^{-1}(\{x_i\} \times D^1)), i = 1, \ldots, r \). As \(W \) is path-connected, it follows that \(c_*: \pi_1(M) \to \pi_1(B_r) \cong F_r \) is an epimorphism. Conclusion: \(r \leq g(\pi_1 M) \). As \(g(M) \) is the maximal number of mutually disjoint, smooth, compact, connected, two-sided codimension one submanifolds that do not disconnect \(M \), it follows that \(g(M) \leq g(\pi_1 M) (\leq \infty) \).

Part 2. is proved as follows. Let \(g = g(\pi_1 M) \). Start with an epimorphism \(\pi_1 M \to \pi_1(B_g) \cong F_g \). As \(B_g \) is an Eilenberg-Mac Lane space (see [7], p. 225), the above epimorphism is induced by a continuous map \(h: M \to B_g \). The basepoint of \(B_g \), \(b \), is the intersection of all circles of \(B_g \). Let \(x_0 \) be any point of \(M \). We may assume that the pre-image of \(b \) is \(x_0 \). Thus, \(h \) is the one point union of \(g \) maps from \(M \) to circles containing \(b \). Homotopying rel \(x_0 \) if necessary, we may assume that these maps are smooth. Now, by Sard’s theorem there are points \(b_1, \ldots, b_g \in B_g - \{b\} \) lying in disjoint circles which are regular values for the functions that make up \(h \). Conclusion: \(h^{-1}(b_1), \ldots, h^{-1}(b_g) \) are mutually disjoint, smooth, closed, connected codimension one submanifolds that do not disconnect \(M \). Thus, \(g(\pi_1 M) \leq g(M) \). Part 2. follows.

References

Departamento de Matemática, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil.

E-mail address: cruz@turing.unicamp.br

E-mail address: ketty@ime.unicamp.br