Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Positive solutions of nonlinear elliptic equations in the Euclidean plane

Authors: U. Ufuktepe and Z. Zhao
Journal: Proc. Amer. Math. Soc. 126 (1998), 3681-3692
MSC (1991): Primary 60J45, 60J65
MathSciNet review: 1616593
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we study the existence of solutions to the problem

\begin{equation*}\left\{ \begin{array}{cc} \Delta u+f(x,u)=0 & \text{in }D\\ u>0&\text{in }D\\ u=0 & \text{on }\partial D\end{array}\right. \end{equation*}

where $D$ is an unbounded domain in $\mathbb{R}^2$ with a compact nonempty boundary $\partial D$ consisting of finitely many Jordan curves. The goal is to prove an existence theorem for the above problem in a general setting by using Brownian path integration and potential theory.

References [Enhancements On Off] (What's this?)

  • 1. S. Axler, P. Bourdon,W. Ramey, ``Harmonic Function Theory '', Springer-Verlag, 1992. MR 93f:31001
  • 2. K. L. Chung, Z. Zhao, ``From Brownian Motion to Schrödinger's Equation'', Springer, Berlin, 1995. MR 96f:60140
  • 3. J. B. Conway, ``A Course in Functional Analysis- Second Edition'', Springer-Verlag, 1990. MR 91e:46001
  • 4. M. Cranston, E. Fabes, Z. Zhao, `` Conditional gauge and potential theory for the Schrödinger Operators.'', Trans. Am. Math. Soc.307,(1983), 174-194. MR 90a:60135
  • 5. F. Gesztesy, Z. Zhao, ``On Positive Solutions of Critical Schrödinger Operators in Two Dimensions'', Jour. of Func. Analy. 127(1995), 235-256. MR 96a:35037
  • 6. I. W. Herbst, Z. Zhao, `` Green's functions for the Schrödinger equation with shortrange potentials.'', Duke Math. J. 59 (1989), 475-519. MR 91a:35053
  • 7. C. Kenig, W. M. Ni, ``An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry'', Amer.J.Math. 106(1984),689-702. MR 85j:35072
  • 8. W.-M. Ni, ``On the elliptic equation $\Delta{u}+K(x) u^{(n+2)/(n-2)}=0$, its generalizations and applications in geometry '', Indiana Univ. Math. J., 31(1995), 493-529.
  • 9. S. Port and C. Stone, ``Brownian Motion and Classical Potential Theory'', Probab. Math. Statist., Academic Press, New York, 1978. MR 58:11459
  • 10. Z. Zhao, ``The Local Feynman-Kac Semigroup'', J. Syst. Sci. Math. Sci.,2(4) (1982), 314-326. MR 87k:60190
  • 11. Z. Zhao, ``Green Functions for Schrödinger operator and conditioned Feynman-Kac gauge'',J. Math. Anal. Appl., 116(1986), 309-334. MR 88f:60142
  • 12. Z. Zhao, ``Green Functions and conditioned gauge theorem for a 2-dimensional domain'', Seminar on Stochastic Processes, Birkhauser, Boston, 1987, 283-294. MR 91e:35079
  • 13. Z. Zhao, ``On the Existence of Positive Solutions of Nonlinear Elliptic Equations-A probabilistic Potential Theory Approach'', Duke Math. J., 69(1993),247-258. MR 94c:35090
  • 14. Z. Zhao, ``Positive Solutions of Nonlinear Second Order Ordinary Differential Equations'', Proc.AMS, 121(1994), 465-469. MR 94h:34012

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60J45, 60J65

Retrieve articles in all journals with MSC (1991): 60J45, 60J65

Additional Information

U. Ufuktepe
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Address at time of publication: Akdeniz Universitesi, Fen-Edebiyat Fakultesi, Matematik Bolumu, 07058 Antalya, Turkey

Z. Zhao
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Received by editor(s): March 10, 1997
Communicated by: Jeffrey B. Rauch
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society