Algebras of invariant functions

on the Shilov boundaries of Siegel domains

Authors:
Anthony H. Dooley and Genkai Zhang

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3693-3699

MSC (1991):
Primary 22E46, 32M15

MathSciNet review:
1625733

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a bounded symmetric domain and the Shilov boundary of . Let be the Shilov boundary of the Siegel domain realization of . We consider the case when is the exceptional non-tube type domain of the type . We prove that is not a Gelfand pair and thus resolve an open question of G. Carcano.

**[BJR]**Chal Benson, Joe Jenkins, and Gail Ratcliff,*Bounded 𝐾-spherical functions on Heisenberg groups*, J. Funct. Anal.**105**(1992), no. 2, 409–443. MR**1160083**, 10.1016/0022-1236(92)90083-U**[BJLR]**C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff,*A geometric criterion for Gelfand pairs associated with the Heisenberg group*, Pacific J. Math.**178**(1997), 1-36. CMP**97:12****[BtD]**Theodor Bröcker and Tammo tom Dieck,*Representations of compact Lie groups*, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR**781344****[C1]**Giovanna Carcano,*A commutativity condition for algebras of invariant functions*, Boll. Un. Mat. Ital. B (7)**1**(1987), no. 4, 1091–1105 (English, with Italian summary). MR**923441****[C2]**Giovanna Carcano,*Algebras of invariant functions on the Šilov boundary of generalized half-planes*, Proc. Amer. Math. Soc.**111**(1991), no. 3, 743–753. MR**1039253**, 10.1090/S0002-9939-1991-1039253-2**[FK]**J. Faraut and A. Korányi,*Function spaces and reproducing kernels on bounded symmetric domains*, J. Funct. Anal.**88**(1990), no. 1, 64–89. MR**1033914**, 10.1016/0022-1236(90)90119-6**[HU]**Roger Howe and Tōru Umeda,*The Capelli identity, the double commutant theorem, and multiplicity-free actions*, Math. Ann.**290**(1991), no. 3, 565–619. MR**1116239**, 10.1007/BF01459261**[HR]**A. Hulanicki and F. Ricci,*A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in 𝐶ⁿ*, Invent. Math.**62**(1980/81), no. 2, 325–331. MR**595591**, 10.1007/BF01389163**[H]**Sigurdur Helgason,*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561****[L1]**O. Loos,*Bounded Symmetric Domains and Jordan Pairs*, University of California, Irvine, 1977.**[L2]**Ottmar Loos,*Jordan pairs*, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR**0444721****[Up]**Harald Upmeier,*Jordan algebras in analysis, operator theory, and quantum mechanics*, CBMS Regional Conference Series in Mathematics, vol. 67, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1987. MR**874756**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22E46,
32M15

Retrieve articles in all journals with MSC (1991): 22E46, 32M15

Additional Information

**Anthony H. Dooley**

Affiliation:
School of Mathematics, University of New South Wales, Sydney 2052, Australia

Email:
a.dooley@unsw.edu.au

**Genkai Zhang**

Affiliation:
School of Mathematics, University of New South Wales, Sydney 2052, Australia

Address at time of publication:
Department of Mathematics, University of Karlstad, S-65188 Karlstad, Sweden

Email:
genkai.zhang@hks.se

DOI:
https://doi.org/10.1090/S0002-9939-98-05051-5

Keywords:
Bounded symmetric domain,
exceptional Lie algebra,
Gelfand pair,
spin representation,
Jordan pair

Received by editor(s):
March 25, 1995

Additional Notes:
This research was sponsored by the Australian Research Council.

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1998
American Mathematical Society