A CLASS OF M-DILATION SCALING FUNCTIONS WITH REGULARITY GROWING PROPORTIONALLY TO FILTER SUPPORT WIDTH

XIANLIANG SHI AND QIYU SUN

(Communicated by J. Marshall Ash)

Abstract. In this paper, a class of M-dilation scaling functions with regularity growing proportionally to filter support width is constructed. This answers a question proposed by Daubechies on p.338 of her book Ten Lectures on Wavelets (1992).

1. Introduction

Let $M \geq 2$ be a fixed integer. A multiresolution analysis for dilation M consists of a sequence of closed subspaces V_j of $L^2(\mathbb{R})$ that satisfy the following conditions (see [C], [D], [M]):

i) $V_j \subset V_{j+1}, \forall j \in \mathbb{Z}$;

ii) $\bigcup_{j \in \mathbb{Z}} V_j = L^2(\mathbb{R})$;

iii) $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$;

iv) $f \in V_j \iff f(2^{-j}) \in V_0$;

v) there exists a function ϕ in V_0 such that \{\phi(\cdot - n); n \in \mathbb{Z}\} is an orthonormal basis of V_0.

The function ϕ is called an M-dilation scaling function. It is easy to see that ϕ satisfies the refinement equation

$$\phi(x) = \sum_{n \in \mathbb{Z}} c_n \phi(Mx - n),$$

where the sequence \{c_n\} satisfies

$$\sum_{n \in \mathbb{Z}} c_n = M.$$
In this paper we shall only deal with compactly supported M-dilation scaling functions. In this case the sequence $\{c_n\}$ must have finite length. The function
\begin{equation}
H(\xi) = \frac{1}{M} \sum_{n \in \mathbb{Z}} c_n e^{in\xi}
\end{equation}
is called a symbol corresponding to the refinement equation (1).

The filter support width $W(\phi)$ of a M-dilation scaling function ϕ is defined as the difference of the largest and the smallest indices of the nonzero c_n. The regularity $R(\phi)$ of ϕ is defined as the supremum of α such that $\phi \in C^\alpha$, where C^α denotes the Hölder class of index α.

In her book [D, p.338], Daubechies remarks that:

At present, I know of no explicit scheme that provides an infinite family of H (i.e., symbol H), for dilation 3 (i.e., $M = 3$), with regularity growing proportionally to the filter support width.

To our knowledge, this question is still open. The purpose of this paper is to construct a class of M-dilation scaling functions ϕ_N for which there exists a constant λ_M independent of N such that
\begin{equation}
R(\phi_N) \geq \lambda_M W(\phi_N),
\end{equation}
where $M \geq 3$. On the other hand it is already known that (see [DL])
\begin{equation}
W(\phi_N) \geq R(\phi_N).
\end{equation}

These facts give an affirmative answer to Daubechies’ question.

The regularity of ϕ has been studied widely; see for instance [CL], [BDS], [D], [HW1], [HW2], [So], [S] and [WL]. In general, to study the regularity of ϕ we need to consider the symbol (2) first. By the Fourier transform, we see that all the symbols H satisfy
\begin{equation}
\sum_{l=0}^{M-1} |H(\xi + \frac{2l\pi}{M})|^2 = 1.
\end{equation}
The solutions H of the equation (4) are determined by (see [BDS], [H], [HSZ])
\begin{equation}
|H(\xi)|^2 = \left(\frac{\sin^2(M\xi/2)}{M^2 \sin^2 \xi/2}\right)^N \sum_{s=0}^{N-1} M(a(s) \sin^{2s} \frac{\xi}{2} + (\sin \frac{M\xi}{2})^{2s} R(\xi),
\end{equation}
where
\[M(a(s) = \sum_{s_1 + \cdots + s_{M-1} = s} \prod_{j=1}^{M-1} \left(\frac{N - 1 + s_j}{s_j} \right) \frac{1}{\sin^{2s_j} \frac{j\pi}{M}} \]
and R is a real-valued trigonometric polynomial such that $\sum_{l=0}^{M-1} R(\xi + 2l\pi/M) = 0$ and the right hand side of (5) is nonnegative.

By the Riesz Lemma (see [D, p.172]), such symbol H exists. Let ϕ_N be a solution of (5) with $R = 0$, and let ϕ_N be the solution of (1) corresponding to the symbol ϕ_N. In [BDS], Bi, Dai and Sun prove the following estimates on the regularity of ϕ_N:
\[|R(\phi_N) - \frac{\ln N}{4\ln M} | \leq C \]
when M is odd, and
\[|R(N\phi) - 4N \ln \left(\frac{\ln N}{4\ln M} \right) | \leq C \]
when M is even. A more precise estimate of $R(N\phi)$ can be found in [S]. For the special cases $M = 3, 4, 5$, similar results are obtained by Soardi ([So]) and Heller and Wells ([HW2]) independently. This result shows that for these special $N\phi$ the regularity does not grow proportionally to the filter support width when M is odd.

To construct M-dilation scaling functions with regularity growing proportionally to the filter support width we use the symbol H_N determined by
\[|H_N(\xi)|^2 = \sum_{k_0 + \cdots + k_{M-1} = MN-M+1} \alpha_N(k_0, \cdots, k_{M-1}) \frac{(MN-M+1)!}{k_0! \cdots k_{M-1}!} \]
\[\times \prod_{l=0}^{M-1} \left(\frac{\sin M\xi/2}{M\sin(\xi/2+\ln M)} \right)^{2k_l}, \]
where $N \geq 1$, and $\alpha_N(k_0, \cdots, k_{M-1})$ is defined by
\[\alpha_N(k_0, \cdots, k_{M-1}) = \begin{cases} 0, & \text{if } k_0 \leq N-1, \\
\frac{1}{\pi(k_0)}, & \text{if } k_0 \geq N, \end{cases} \]
where $E = \{ j : k_j \geq N \}$ and $\#(E)$ is the cardinality of E. Let ϕ_N be the solution of (1) corresponding to a symbol H_N. Then we have the following

Theorem. Let $M \geq 3$ and $N \geq 2$ be any natural numbers. Then ϕ_N is an M-dilation scaling function and there exists a constant C independent of N such that
\[\left(\frac{1}{2} - \frac{(M-1)\ln(1 + \frac{1}{M-1})}{2\ln M} \right)N - \frac{\ln N}{4\ln M} - C \]
\[\leq R(\phi_N) \leq \left(\frac{1}{2} - \frac{(M-1)\ln(1 + \frac{1}{M})}{2\ln M} \right)N - \frac{\ln N}{4\ln M} + C. \]

Remark 1. Observe that $W(\phi_N) \leq 2(M-1)MN$. Therefore the regularity $R(\phi_N)$ of ϕ_N grows proportionally to the filter support width $W(\phi_N)$, i.e., (3) holds.

Remark 2. Let $D(\phi) = R(\phi)/W(\phi)$ be the rate of regularity and filter support width of a scaling function ϕ. Then
\[D(\phi_N) \geq \frac{1}{4M(M-1)} \left(1 - \frac{(M-1)\ln(1 + \frac{1}{M-1})}{\ln M} \right) - C \frac{\ln N}{N}, \]
and
\[D(N\phi) \leq \frac{\ln N}{4NM\ln M} + \frac{C}{N} \]
when M is odd, and
\[D(N\phi) \leq \frac{\ln \left(\sin M\pi/(2M+2) \right)^{-1}}{M\ln M} + C \frac{\ln N}{N} \]
when M is even. Therefore we get
\[D(\phi_N)/D(N\phi) \geq \frac{N}{\ln N} \left(\frac{\ln M}{M-1} - \ln(1 + \frac{1}{M-1}) \right) - C \]
when M is odd, and
\[D(\phi_N)/D(N\phi) \geq \frac{\ln M - (M-1)\ln(1 + \frac{1}{M-1})}{4(M-1)\ln(\sin M\pi/(2M+2))^{-1}} - C \frac{\ln N}{N} \]
when \(M \) is even. This shows that \(D(\phi_N) \) of the \(M \)-dilation scaling function \(\phi_N \) is larger than the one of \(N \phi \) even when \(M \) is an even integer larger than 4.

2. Proof of the Theorem

To prove the Theorem, we estimate \(H_N(\xi) \) first. Let
\[
h(\xi) = \frac{\sin^2 M\xi/2}{M^2 \sin^2 \xi/2}
\]
and
\[
B_N(\xi) = (h(\xi))^{-N} |H_N(\xi)|^2.
\]
Then for all real valued \(\xi \) we have
\[
B_N(-\xi) = \sum_{k_0 + \cdots + k_{M-1} = MN-M+1} \alpha_N(k_0, k_{M-1}, \cdots, k_1) \frac{(MN-M+1)!}{k_0! k_1! \cdots k_{M-1}!}
\times (h(\xi))^{k_0-N} \prod_{l=1}^{M-1} (h(\xi + \frac{2l\pi}{M}))^{k_l}
= B_N(\xi)
\]
and
\[
B_N(\xi) \geq 0.
\]
Therefore by the Riesz Lemma ([D, p.172]) we obtain the existence of \(H_N(\xi) \) with
\[
H_N(\xi) = \left(\frac{1 - e^{iM\xi}}{M(1 - e^{i\xi})} \right)^N \tilde{H}_N(\xi)
\]
and
\[
|\tilde{H}_N(\xi)|^2 = B_N(\xi).
\]
From the definition of \(\alpha_N(k_0, \cdots, k_{M-1}) \) and from
\[
\sum_{l=0}^{M-1} h(\xi + \frac{2l\pi}{M}) = 1,
\]
we get
\[
\alpha_N(k_0, k_1, \cdots, k_{M-1}) + \alpha_N(k_1, k_2, \cdots, k_{M-1}, k_0)
+ \cdots + \alpha_N(k_{M-1}, k_0, \cdots, k_{M-2}) = 1
\]
and
\[
\sum_{l=0}^{M-1} |H_N(\xi + \frac{2l\pi}{M})|^2
= \sum_{k_0 + \cdots + k_{M-1} = MN-M+1} \alpha_N(k_0, k_1, \cdots, k_{M-1}) + \alpha_N(k_1, k_2, \cdots, k_{M-1}, k_0)
+ \cdots + \alpha_N(k_{M-1}, k_0, \cdots, k_{M-2}) \times \frac{(MN-M+1)!}{k_0! k_1! \cdots k_{M-1}!} \prod_{l=0}^{M-1} (h(\xi + \frac{2l\pi}{M}))^{k_l}
= (\sum_{l=0}^{M-1} h(\xi + \frac{2l\pi}{M}))^{MN-M+1}
= 1.
\]
Therefore (4) holds for $H_N(\xi)$. Recall that $H_N(\xi) \neq 0$ when $|\xi| \leq \pi/M$. Hence the solution ϕ_N of (1) corresponding to the symbol $H_N(\xi)$ is an M-dilation scaling function by an elementary argument ([D, p.182, Theorem 6.3.1] with $K = [-\pi, \pi]$).

To estimate the regularity of ϕ_N, we need some estimates on $B_N(\xi)$. From the Stirling formula, which says that $n!$ is equivalent to $n^n e^{-n} \sqrt{n}$, from $1/(M-1) \leq \alpha_N(k_0, \cdots, k_{M-1}) \leq 1$ when $k_0 \geq N$ and from $h(2\pi/(M-1)) = 1/M^2$, we get

$$B_N(\xi) \leq \sum_{k_0+\cdots+k_{M-1}=MN-M+1, k_0 \geq N} \frac{(MN-M+1)!}{k_0! \cdots k_{M-1}!} \times (h(\xi))^{k_0-N} \prod_{l=1}^{M-1} (h(\xi + 2l\pi/M)^{k_l} \leq (MN-M+1)! \sum_{0 \leq k_0 \leq (N-1)(M-1)} \frac{(k_0 + N)!((N-1)(M-1) - k_0)!}{(N-1)(M-1)!) \times (h(\xi))^{k_0(1 - h(\xi))^{(N-1)(M-1) - k_0} \leq \frac{(MN-M+1)!}{N!(N-1)(M-1)!} \leq CM^N(1 + \frac{1}{M-1})^{(M-1)N} N^{-1/2}$$

and

$$B_N(2\pi/(M-1)) \geq \frac{1}{M-1} \sum_{k_1+\cdots+k_{M-1}=(M-1)(N-1)} \frac{(MN-M+1)!}{N!k_1! \cdots k_{M-1}!} \times \prod_{l=1}^{M-1} (h(2\pi/(M-1) + 2l\pi/M)^{k_l} \geq \frac{1}{M-1} \times \frac{(MN-M+1)!}{N!(N-1)(M-1)!} \left(1 - \frac{1}{M^2}\right)^{(N-1)(M-1)} \geq CM^N(1 + \frac{1}{M})^{(M-1)N} N^{-1/2}.$$

Therefore we get

$$R(\phi_N) \geq \left(\frac{1}{2} - \frac{(M-1)\ln(1 + \frac{1}{M})}{2\ln M}\right)N - \frac{\ln N}{4\ln M} - C$$

by an argument as in [D, p.217]. Observe that $2M\pi/(M-1) = 2\pi/(M-1) + 2\pi$. By an argument similar to that on p.220 of [D] we obtain

$$R(\phi_N) \leq \left(\frac{1}{2} - \frac{(M-1)\ln(1 + 1/M)}{2\ln M}\right)N - \frac{\ln N}{4\ln M} - C.$$

This completes the proof of the Theorem.

References

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

E-mail address: xshi@math.tamu.edu

Center for Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China

Current address: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

E-mail address: matsunqy@leonis.nus.edu.sg