The associated variety

of an induced representation

Authors:
Dan Barbasch and Mladen Bozicevic

Journal:
Proc. Amer. Math. Soc. **127** (1999), 279-288

MSC (1991):
Primary 22E46

DOI:
https://doi.org/10.1090/S0002-9939-99-04482-2

MathSciNet review:
1458862

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the behavior of *the associated variety* under induction from real parabolic subgroups. We derive a formula for *the associated variety* of an induced module which is analogous to the formula for *the wave front set* of a derived functor module obtained by Barbasch and Vogan.

**[ABV]**J. Adams, D. Barbasch, D. Vogan,*The Langlands classification and irreducible representations for real reductive groups*, Birkhäuser. MR**93j:22001****[B]**D. Barbasch,*Unipotent representations for real reductive groups*, Proceedings of ICM 1990, Springer Verlag, 1991, pp. 769-777. MR**93m:22012****[BV]**D. Barbasch and D. Vogan,*Weyl Group Representations and Nilpotent Orbits*, Representation Theory of Reductive Groups (P.C. Trombi, eds.), Birkhäuser-Boston, 1983, pp. 21-32. MR**85g:22025****[BB]**W. Borho and J.-L. Brylinski,*Differential operators on homogeneous spaces III*, Invent. Math.**80**(1985), 1-68. MR**87i:22045****[Ch]**J.-T. Chang,*Remarks on localization and standard modules: the duality theorem on a generalized flag variety*, Proc. of the Amer. Math. Soc.**117**(1993), 585-591. MR**93d:22016****[Gi]**V. Ginsburg,*Characteristic varieties and vanishing cycles*, Invent. Math.**84**(1986), 327-402. MR**87j:32030****[HMSW]**H. Hecht, D. Mili\v{c}i\'{c}, W. Schmid, J. Wolf,*Localization and standard modules for real semisimple groups I: The duality theorem*, Invent. Math.**90**(1987), 297-332. MR**89e:22025****[Ka]**M. Kashiwara,*Systems of microdifferential equations*, Progress in Math. 34, Birkhäuser, 1983. MR**86b:58113****[SV]**W. Schmid and K. Vilonen,*Characteristic cycles of constructible sheaves*, Invent. Math.**124**(1996), 451-502. MR**96k:32016****[SW]**W. Schmid and J. Wolf,*A vanishing theorem for open orbits on complex flag manifolds*, Proc. of the Amer. Math. Soc.**92**(1984), 461-464. MR**85i:32029****[Vo]**D.Vogan,*Representations of real reductive Lie groups*, Progress in Math. 15, Birkhäuser, 1981. MR**83c:22022**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22E46

Retrieve articles in all journals with MSC (1991): 22E46

Additional Information

**Dan Barbasch**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853

Email:
barbasch@math.cornell.edu

**Mladen Bozicevic**

Affiliation:
University of Zagreb, Geotechnical Faculty, 42000 Varaždin, Croatia

Email:
bozicevi@cromath.math.hr

DOI:
https://doi.org/10.1090/S0002-9939-99-04482-2

Received by editor(s):
October 20, 1996

Received by editor(s) in revised form:
April 30, 1997

Communicated by:
Roe Goodman

Article copyright:
© Copyright 1999
American Mathematical Society