G-IDENTITIES ON ASSOCIATIVE ALGEBRAS

Y. BAHTURIN, A. GIAMBRUNO, AND M. ZAICEV

(Communicated by Ken Goodearl)

Abstract. Let R be an algebra over a field and G a finite group of automorphisms and anti-automorphisms of R. We prove that if R satisfies an essential G-polynomial identity of degree d, then the G-codimensions of R are exponentially bounded and R satisfies a polynomial identity whose degree is bounded by an explicit function of d. As a consequence we show that if R is an algebra with involution $*$ satisfying a $*$-polynomial identity of degree d, then the $*$-codimensions of R are exponentially bounded; this gives a new proof of a theorem of Amitsur stating that in this case R must satisfy a polynomial identity and we can now give an upper bound on the degree of this identity.

§1. Introduction

Let R be an algebra over a field F and G a finite group of automorphisms and anti-automorphisms of R. G-polynomials and G-polynomial identities are defined in a natural way (see [M] and [GR]). Two kinds of problems are usually considered:

1. Suppose that the ring of invariants R^G satisfies a polynomial identity or more generally that R satisfies a G-polynomial identity of degree d; under what circumstances must R also satisfy a polynomial identity?

2. In the case of hypotheses giving a positive solution to the above problem, can one find an upper bound for the degree of a polynomial identity of R (as a function of d)?

It is well known (see [M]) that problem 1 has a negative answer in general. In case G is a group of automorphisms and R has no $|G|$-torsion, Kharchenko [K] proved that a polynomial identity (PI) in R^G forces the existence of a polynomial identity in R. Let $*$ denote an involution (an anti-automorphism of order 2) on R; when $G = \{1, *\}$, Amitsur in two subsequent papers ([A1] and [A2]) gave a positive answer to problem 1 with no further hypotheses on R.

We should remark that, if G is arbitrary, by combining the results of Amitsur and Kharchenko it is easy to prove that R^G PI forces R PI in case of no $|G|$-torsion.

What about problem 2? Very little is known for general algebras. Both Amitsur and Kharchenko gave bounds on the degree of a polynomial identity satisfied by R provided R is a semiprime algebra. While passing from semiprime algebras to arbitrary ones (by using the famous Amitsur’s trick) it was proved that R must satisfy an identity of the form $S_{|G|d}(x_1, \ldots, x_{|G|d})^m$ where $S_{|G|d}(x_1, \ldots, x_{|G|d})$ is the...
standard polynomial of degree \(|G|d\). Thus no information on \(m\) was available and, so, no dependence between \(d\) and the degree of an identity on \(R\) was established.

In this paper we will approach problem 1 (and 2) by translating it into a problem concerning the \((G-)\)-codimensions of the algebra \(R\). The sequence of codimensions was introduced by Regev in [Re1] as a basic tool for proving the tensor product theorem and it was applied in [Re2] for finding explicit identities of a PI-algebra. A basic theorem proved by Regev states that an algebra \(R\) satisfies a PI if and only if the codimensions of \(R\) are exponentially bounded. The sequence of \(G\)-codimensions was introduced and studied in [GR].

For an algebra \(R\) let \(c_n(R)\) and \(c_n(R|G)\) denote the \(n\)-th codimension and the \(n\)-th \(G\)-codimension respectively of \(R\). In this paper we introduce the notion of an essential \(G\)-polynomial and we prove that if \(R\) satisfies an essential \(G\)-identity of degree \(d\), then \(c_n(R|G)\) and, so, \(c_n(R)\) is bounded by the exponential function \(|G|^d(f(d, |G|) - 1)2^n\) where \(f(d, |G|)\) is explicitly computed. It also follows that \(f(d, |G|)\) is an upper bound for the degree of a polynomial identity satisfied by \(R\).

As a consequence we give a positive solution to a question raised in [GR], namely we prove that if \(R\) is an algebra with involution \(*\) satisfying a \(*\)-polynomial identity of degree \(d\), the \(*\)-codimensions \(c_n(R|*)\) of \(R\) are exponentially bounded by a function of \(d\). This gives a new proof of Amitsur’s theorems and we can now give an upper bound on the degree of a PI satisfied by \(R\).

In order to bound the codimensions, we use and extend a result of Latyshev; our main tools are the properties of \(m\)-indecomposable words introduced and studied by Razmyslov (see [R]) and we are now able to find an estimate on their number (namely Lemma 2).

One final remark is in order. As a consequence of this estimate the results of [BZ] are improved in that there is now an explicit formula that gives an upper bound for the degree of the identity satisfied by a Lie (super)algebra \(L\) graded by a finite group \(G\) of order \(t\) if the trivial component of \(L\) satisfies a non-trivial identity of degree \(d\) and this bound depends on \(t\) and \(d\) entirely.

§2. \(G\)-POLYNOMIALS AND \(G\)-IDENTITIES

Throughout \(\text{Aut}^*(R)\) will be the group of automorphisms and anti-automorphisms of the \(F\)-algebra \(R\) and \(G \leq \text{Aut}^*(R)\) a finite group. If \(\text{Aut}(R)\) is the group of automorphisms of \(R\), then \(G \cap \text{Aut}(R)\) is a subgroup of \(G\) of index \(\leq 2\).

Let \(X\) be a set, \(G\) a finite group and \(H\) a subgroup of \(G\) of index two. If we interpret \(H\) as automorphisms and \(G \setminus H\) as anti-automorphisms, we can construct \(F\langle X|G\rangle\), the free algebra on \(X\) with \(G\)-action. \(F\langle X|G\rangle\) is freely generated by the set \(\{x^g = g(x) | x \in X, g \in G\}\) on which \(G\) acts in a natural way: \((x^{g_1})^{g_2} = x^{(g_1g_2)}\).

Extend this action to \(F\langle X|G\rangle\): if \(v\) and \(w\) are monomials, \(g \in G\), then \((vw)^g = v^g w^g\) if \(g \in H\) and \((vw)^g = w^g v^g\) if \(g \in G \setminus H\). By linearity now \(G\) acts on \(F\langle X|G\rangle\) with \(H\) as automorphisms and \(G \setminus H\) as anti-automorphisms. Given any algebra \(R\) as above, by interpreting \(G \leq \text{Aut}^*(R)\) and \(H = G \cap \text{Aut}(R)\), any set theoretic map \(\phi : X \mapsto R\) extends uniquely to a homomorphism \(\tilde{\phi} : F\langle X|G\rangle \mapsto R\) such that \(\tilde{\phi}(x^g) = \phi(x)^g\). For fixed \(R\), let \(\Phi\) be the set of all such homomorphisms and set

\[I = \bigcap_{\tilde{\phi} \in \Phi} \text{Ker}\tilde{\phi}. \]
An element $f \in F(X|G)$ will be called a G-polynomial. If $f \in I$, then f will be called a G-identity for R.

Let $G^n = G \times \cdots \times G$ and $g = (g_1, \ldots, g_n) \in G^n$. Denote by

$$P_{n,g} = \text{Span}_F \{ x_{\sigma(1)}^{g_1} \cdots x_{\sigma(n)}^{g_n} \mid \sigma \in S_n \}$$

the space of multilinear polynomials in $F(X|G)$ in the variables $x_1^{g_1}, \ldots, x_n^{g_n}$. In particular, for $1 = (1, \ldots, 1)$ we have $P_{n,1} = P_n$. Also let $Q_n = \sum_{g \in G^n} P_{n,g}$ be the space of multilinear G-polynomials in x_1, \ldots, x_n.

A G-identity $f \in Q_n$ will be called an essential one if it is of the form

$$f = x_1^1 \cdots x_n^1 + \sum_{1 \neq \sigma \in S_n} \sum_{g \in G^n} \alpha_{\sigma,g} x_{\sigma(1)}^{g_1} \cdots x_{\sigma(n)}^{g_n}.$$

If we let $J \subset F(X) \subset F(X|G)$ be the T-ideal of identities of R, then $c_n(R) = \dim \frac{P_{n+1}}{J}$ and $c_n(R|G) = \dim \frac{Q_{n+1}}{J}$ are called the n-th codimension of R and the n-th G-codimension of R, respectively. The relation between these two dimensions is given in the following ([GR, Lemma 4.4])

Lemma 1. $c_n(R) \leq c_n(R|G)$.

§3. Decomposable monomials

Introduce a partial ordering on the variables x_i^j by requiring that $x_i^j < x_h^k$ if $i < j$ for $g, h \in G$; extend this ordering lexicographically to all monomials (words) in Q_n by comparing them from left to right.

Following [R] we introduce the following:

Definition. A monomial $w \in P_{n,g}$ is said to be m-decomposable if it can be represented in the form $w = aw_m w_{m-1} \cdots w_1 b$ where $w_i (i = 1, \ldots, m)$ are nonempty monomials such that

- a) the left variable in the monomial w_i is greater than any other variable in this monomial ($i = 1, \ldots, m$);
- b) the first variable in the monomial w_{i+1} is greater than the first variable in the monomial w_i ($i = 1, \ldots, m-1$).

In case w has no m-decompositions then it is said to be m-indecomposable.

In this section we want to find a bound on the number $a_m(n)$ of m-indecomposable multilinear monomials in x_1, \ldots, x_n. It is well known that $a_m(n)$ satisfies the following recurrent relation (see [R, Section 2.1])

$$a_m(n) = \sum_{i=0}^{n-1} \frac{(n-1)!}{i!(n-1-i)!} a_m(i) a_{m-1}(n-1-i),$$

(1)

where $a_m(0) = 1$. Moreover if we set

$$b_m(n) = \frac{a_m(n)}{n!},$$

asymptotically the value $b_m(n)$ is less than $(\frac{1}{e})^n$ for any fixed c. We will need an explicit estimate for n, depending only on c and m.

Let $t = m + [\log_2 c]$ and $N = 2^{2^t+1}$. We denote by $p_j, j \geq 3$ an integer for which

$$\log_N \ldots \log_N p_j = p_2$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and set \(p_2 = 2^{2^t} \). We remark that with such a choice of \(p_2 \) the inequality
\[
(2) \quad n! p_2 > 2^{tn}
\]
is satisfied for all natural \(n \). We set \(f(m, c) = \log_2 p_m \).

Lemma 2. Let \(n \geq f(m, c) \). Then \(b_m(n) < \left(\frac{1}{2} \right)^n \).

Proof. From (1) above it follows that \(b_k(n) \) satisfies the following recurrent relation
\[
(3) \quad b_k(n) = \frac{1}{n} \sum_{i=0}^{n-1} b_k(i) b_{k-1}(n-1-i),
\]
where \(b_k(0) = 1 \). It is easy to observe, that \(b_2(n) = \frac{1}{n} \). In what follows we assume that \(k \geq 2 \).

First, we show that if the following conditions are satisfied
\[
(4) \quad b_k(j) < p \varepsilon_j, \quad j = 0, 1, \ldots
\]
\[
(5) \quad b_{k+1}(j) < q(2\varepsilon)^j, \quad j = 0, 1, \ldots, n-1,
\]
where \(\varepsilon < \frac{1}{2} \), then
\[
(6) \quad b_{k+1}(n) < \frac{2pq}{n} (2\varepsilon)^{n-1}.
\]
In fact, it follows from (3) that
\[
b_{k+1}(n) < \frac{1}{n} \sum_{i=0}^{n-1} q(2\varepsilon)^i p \varepsilon^{n-1-i} = \frac{pq}{n} (2\varepsilon)^{n-1} \sum_{i=0}^{n-1} \left(\frac{1}{2} \right)^i < \frac{2pq}{n} (2\varepsilon)^{n-1}.
\]

We assume now, that (4) holds, \(n_0 > \frac{q}{q} \) and \(q \geq \left(\frac{1}{2^q} \right)^{n_0} > \left(\frac{1}{2^q} \right)^{\frac{n}{m}} \). Then the inequality (5) is satisfied for all \(j \leq n_0 \), since \(b_k(n) \leq 1 \) for all \(k \) and \(n \). But then, by (6), \(b_{k+1}(j) < q(2\varepsilon)^j \) also for \(j = n_0 + 1 \), since \(\frac{2p}{n_0} \leq 2\varepsilon \). It follows that with such a choice of \(q \) the inequality (5) holds for all \(j \). So, we have shown that if
\[
b_k(j) < q_k \varepsilon_k^j
\]
for all \(j \), then
\[
b_{k+1}(j) < q_{k+1} \varepsilon_{k+1}^j
\]
also for all \(j \) with \(\varepsilon_{k+1} = 2 \varepsilon_k \) and
\[
q_{k+1} \geq \left(\frac{1}{\varepsilon_{k+1}} \right)^{\frac{2^k}{r_k}}.
\]
We set \(\varepsilon_2 = 2^{-t} \). From (2) it follows that \(b_2(j) < p_2 \varepsilon_2^j \) for all \(j \). Then \(\varepsilon_{k+1} = 2^{-t} \) and \(r \leq t \). Hence
\[
\left(\frac{1}{\varepsilon_{k+1}} \right)^{\frac{2^k}{r_k}} = (2^{2^{r+1}})^{q_k} \leq N^{q_k}.
\]
Thus the inequality (7) is satisfied by all numbers of the form \(q_2 = p_2, \ldots, q_k = p_k, q_{k+1} = N^{p_k} = p_{k+1} \). Hence, for \(k = m \) we have
\[
b_m(n) < p_m \varepsilon_m^n \quad \text{and} \quad \varepsilon_m = 2^{m-2} \varepsilon_2 = 2^{m-t-2}.
\]
By the choice of the number \(t \) the following inequality holds:
\[
 t \geq m + \log_2 c - 1 = m + \log_2 2c - 2.
\]
Hence \(\varepsilon_m \leq \frac{1}{2c} \). But then
\[
 b_m(n) < p_m \left(\frac{1}{2c} \right)^n.
\]
By the hypothesis, \(n \geq \log_2 p_m \). Hence \(p_m \left(\frac{1}{2} \right)^n \leq 1 \) and from (8) we obtain the required estimate. Lemma 2 has been proven. \(\square \)

§4. MAIN RESULT

In this section we shall prove the result on \(G \)-identities mentioned in the introduction and then we shall deduce Amitsur’s theorem [A1] on rings with involution with the desired bound on the degree of a PI for \(R \).

Theorem 1. Let \(R \) be an algebra over a field \(F \) and \(G \) a finite subgroup of \(\text{Aut}^*(R) \). Suppose that \(R \) satisfies some multilinear essential \(G \)-identity of degree \(d \). Then for \(n \) sufficiently large we have \(c_n(R(G)) \leq |G|^n (f(d, |G|) - 1)^{2n} \) and \(R \) satisfies a non-trivial polynomial identity, whose degree is bounded by the function \(f(d, |G|) \). In case \(G \leq \text{Aut}(R) \), then \(c_n(R(G)) \leq |G|^n (d - 1)^{2n} \) and \(R \) satisfies a non-trivial polynomial identity, whose degree is bounded by \(3|G|(d - 1)^2 \).

The proof of this theorem will be deduced after a sequence of reductions. Suppose throughout that \(G \) is a finite subgroup of \(\text{Aut}^*(R) \) and \(R \) satisfies an essential \(G \)-identity \(f \) of degree \(d \).

Notice that in order to prove that \(R \) satisfies an ordinary identity whose degree is bounded by a function \(k = k(d, |G|) \) it is enough to find an integer \(n \) for which the following inequality is satisfied:
\[
 \dim \frac{P_n + I}{I} < n!
\]
and to show that \(n \leq k(d, |G|) \). Note that \(P_n \subset Q_n \) therefore it is enough to show that
\[
 c_n(R(G)) = \dim \frac{Q_n + I}{I} < n!.
\]

Let us denote by \(V^{(d)} \) the linear span of \(d \)-indecomposable monomials.

Lemma 3. If \(R \) satisfies a multilinear essential \(G \)-identity of degree \(d \), then for any \(n \) we have \(Q_n \subset I + V^{(d)} \).

Proof. Suppose by contradiction that the Lemma is false. Then there exists a counterexample \(B = x_{i_1}^{s_{i_1}} \cdots x_{i_n}^{s_{i_n}} \) which is minimal in the left lexicographic order defined in the previous section.

By the hypotheses \(R \) satisfies an identity of degree \(d \), hence
\[
 x_1^1 \cdots x_d^1 \equiv \sum_{1 \neq \sigma \in S_d} \sum_{g \in G^d} \alpha_{\sigma, g} x_{\sigma(1)}^{g_{\sigma(1)}} \cdots x_{\sigma(d)}^{g_{\sigma(d)}} \pmod{I},
\]
for some \(\alpha_{\sigma, g} \in F \).
Since the ideal of G-identities of R is invariant under all endomorphisms of $F(X|G)$ commuting with the G-action (i.e., $\theta(a^g) = \theta(a)^g$), (11) implies that

\begin{equation}
\sum_{1 \neq \sigma \leq S_d, g \in G^d} \alpha_{\sigma,g} f_{\sigma(1)}^{g_1} \cdots f_{\sigma(d)}^{g_d} \equiv (mod I)
\end{equation}

for any $t_1, \ldots, t_n \in F(X|G)$.

Since $B \notin V^{(d)}$, there exist indices j_1, \ldots, j_d which determine a d-decomposition on B. We will write $y_1 = x_{i_1}^{s_1}, \ldots, y_n = x_{i_n}^{s_n}$ for convenience.

We denote by a_0 the product $y_1 \cdots y_{j_1} - 1$, if $j_1 > 1$. If $j_1 = 1$, then we simply assume that a_0 is the empty word. Similarly, we set $a_{d+1} = y_{j_{d+1}} \cdots y_n$ if $j_d < n$, and set a_{d+1} the empty word as soon as $j_d = n$. For all $k = 1, \ldots, d - 1$ we set

\begin{equation}
a_k = y_{j_k} y_{j_{k+1}} \cdots x_{j_{k+1}} - 1
\end{equation}

and $a_d = y_{j_d}$. Then $B = a_0 a_1 \cdots a_d a_{d+1}$. But it follows from (12) that, modulo I, we can express B as a linear combination of products of the form $B_{\sigma,g} = a_0 a_{\sigma(1)}^{g_1} \cdots a_{\sigma(d)}^{g_d} a_{d+1}$ where $\sigma \in S_d$ and $\sigma \neq 1$. Since B is a minimal counterexample and all $B_{\sigma,g}$ are less than B, we obtain (modulo I) an expression of B as a linear combination of d-indecomposable monomials, a contradiction.

To complete the proof of Theorem 1, notice that (modulo I) Q_n is a sum of $|G|^n$ subspaces $P_{n,g}$ and every $P_{n,g}$ contains no more than $a_d(n)$ linearly independent monomials. By Lemma 2 it follows that the inequalities (9) and (10) hold for $n \geq f(d, |G|)$ and, so, R satisfies a PI of degree $f(d, |G|)$. But then by [GR, Lemma 4.7], $c_n(R(G)) \leq |G|^n c_n(R) \leq |G|^n (f(d, |G|) - 1)^2 n$.

In case $G \leq \text{Aut}(R)$ one can give an estimate of the degree of an identity on R which is better than the one given by the function $f(d, |G|)$ above. To accomplish this, one should observe that the space Q_n can be spanned (modulo I) by the d-good monomials in the sense of [Re2]. In this case since by [Re2, Theorem 1.8] the number of d-good monomials is $\leq (d-1)^2 n$, it follows that $c_n(R(G)) \leq |G|^n (d-1)^2 n$ and, as in [BGR] R satisfies a PI of degree $\leq e|G|(d-1)^2$ where e is the basis of the natural logarithms.

We can now improve Amitsur’s theorem. In case $G = \{1, *\}$ where $*$ is an involution, G-polynomials and G-identities are called $*$-polynomials and $*$-identities respectively. Also, $c_n(R(G)) = c_n(R|*)$ is called the n-th $*$-codimension of R.

Corollary 1. Let R be an algebra with involution $*$ over a field F satisfying a non-trivial $*$-identity of degree d. Then for n sufficiently large we have $c_n(R|*) \leq 2^n (f(2d, 2) - 1)^2 n$ and R satisfies a non-trivial polynomial identity whose degree is bounded by the function $f(2d, 2)$.

Proof. By applying the usual linearization process to the $*$-identity of R, we get that R satisfies a $*$-identity of the form

$$\sum_{s \in G^d} \alpha_s x_1^{s_1} \cdots x_d^{s_d} + \sum_{1 \neq \sigma \leq S_d, q \in G^d} \beta_{\sigma,q} x_{\sigma(1)}^{q_1} \cdots x_{\sigma(d)}^{q_d}$$

where $s = (s_1, \ldots, s_d), q = (q_1, \ldots, q_d) \in G^d$ and $G = \{1, *\}$. Also, without loss of generality we may assume that $\alpha_1 \neq 0$ for $1 = (1, \ldots, 1)$. Replacing x_i by $x_{2i-1} x_{2i}$
for all \(i = 1, \ldots, d \), we obtain a \(\ast \)-identity of the form
\[
x_1 \cdots x_{2d} + \sum_{\substack{1 \neq \sigma \in S_{2d} \\ q \in G^{2d}}} \gamma_{\sigma, q} x_{\sigma(q(1))} \cdots x_{\sigma(q(2d))}.
\]
Since this is an essential \(G \)-identity on \(R \), Theorem 1 gives the desired conclusion.

References

(Y. Bahturin and M. Zaicev) DEPARTMENT OF ALGEBRA, FACULTY OF MATHEMATICS AND MECHANICS, MOSCOW STATE UNIVERSITY, MOSCOW, 119899 RUSSIA

E-mail address: bahturin@mech.math.msu.su

E-mail address: zaicev@nw.math.msu.su

(A. Giambruno) DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITÀ DI PALERMO, VIA ARCHIRAFI 34, 90123 PALERMO, ITALY

E-mail address: a.giambruno@unipa.it