Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Smith equivalence of representations
for finite perfect groups


Authors: Erkki Laitinen and Krzysztof Pawalowski
Journal: Proc. Amer. Math. Soc. 127 (1999), 297-307
MSC (1991): Primary 57S17, 57S25
DOI: https://doi.org/10.1090/S0002-9939-99-04544-X
MathSciNet review: 1468195
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using smooth one-fixed-point actions on spheres and a result due to Bob Oliver on the tangent representations at fixed points for smooth group actions on disks, we obtain a similar result for perfect group actions on spheres. For a finite group $G$, we compute a certain subgroup $IO'(G)$ of the representation ring $RO(G)$. This allows us to prove that a finite perfect group $G$ has a smooth $2$-proper action on a sphere with isolated fixed points at which the tangent representations of $G$ are mutually nonisomorphic if and only if $G$ contains two or more real conjugacy classes of elements not of prime power order. Moreover, by reducing group theoretical computations to number theory, for an integer $n \ge 1$ and primes $p, q$, we prove similar results for the group $G = A_{n}$, $\operatorname{SL} _{2}(\mathbb{F} _{p})$, or ${\operatorname{PSL}} _{2}(\mathbb{F} _{q})$. In particular, $G$ has Smith equivalent representations that are not isomorphic if and only if $n \ge 8$, $p \ge 5$, $q \ge 19$.


References [Enhancements On Off] (What's this?)

  • [AB] Atiyah, M.F. and Bott,R., A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math. 88 (1968), 451-491. MR 38:731
  • [Br] Bredon, G., Representations at fixed points of smooth actions of compact groups, Ann. of Math. 89 (1969), 515-532. MR 39:7628
  • [CS1] Cappell, S.E. and Shaneson, J.L., Fixed points of periodic maps, Proc. Nat. Acad. Sci. USA 77 (1980), 5052-5054. MR 81m:57029
  • [CS2] Cappell, S.E. and Shaneson, J.L., Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 1-19. MR 84a:57038
  • [CS3] Cappell, S.E. and Shaneson, J.L., Representations at fixed points, in Group Actions on Manifolds (ed. R.Schultz), Contemp. Math. 36 (1985), 151-158. MR 86h:57038
  • [DP] Dovermann, K.H. and Petrie, T., Smith equivalence of representations for odd order cyclic groups, Topology 24 (1985), 283-305. MR 87d:57030
  • [DS] Dovermann, K.H. and Suh, D.Y., Smith equivalence for finite abelian groups, Pacific J. Math. 152 (1992), 41-78. MR 93d:57069
  • [DW] Dovermann, K.H. and Washington, L.D., Relations between cyclotomic units and Smith equivalence of representations, Topology 28 (1989), 81-89. MR 90e:57071
  • [DPS] Dovermann, K.H., Petrie, T. and Schultz, R., Transformation groups and fixed point data, in Group Actions on Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 159-189. MR 86e:57039
  • [HW] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, 3rd Ed., Oxford University Press, London, 1954. MR 16:673c
  • [H] Huppert, B., Endliche Gruppen I, Grundlehren 134, Springer, Berlin, 1967. MR 37:302
  • [LM] Laitinen, E. and Morimoto, M., Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
  • [LMP] Laitinen, E., Morimoto, M. and Pawa{\l}owski, K., Deleting-Inserting Theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), 10-38. MR 96b:57043
  • [MP] Masuda, M. and Petrie, T., Lectures on transformation groups and Smith equivalence, in Group Actions and Manifolds (ed. R. Schultz), Contemp. Math. 36 (1985), 191-242. MR 87a:57047
  • [Mi] Milnor, J.W., Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 33:4922
  • [O] Oliver, B., Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583-615. MR 97g:57059
  • [Pe1] Petrie, T., $G$-surgery I - A survey, in Algebraic and Geometric Topology, Proceedings (Santa Barbara 1977), Lecture Notes in Math. 664 (1978), 197-233. MR 80g:57049
  • [Pe2] Petrie, T., Pseudoequivalences of $G$-manifolds, in Algebraic and Geometric Topology, Proc. Symp. in Pure Math. 32 (1978), 169-210. MR 80e:57039
  • [Pe3] Petrie, T., Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), 61-99. MR 85i:57011
  • [PR] Petrie, T. and Randall, J., Spherical isotropy representations, Publ. Math. IHES 62 (1985), 5-40. MR 88i:57017
  • [Sa] Sanchez, C.U., Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445-448. MR 53:11641
  • [Sch] Schultz, R., Problems submitted to the A.M.S. Summer Research Conference on Group Actions, Collected and edited by R. Schultz, in Group Actions on Manifolds, Contemp. Math., vol. 36, 1985, pp. 513-568. MR 86i:57042
  • [Se1] Serre, J.-P., Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970. MR 41:138
  • [Se2] Serre, J.-P., Linear Representations of Finite Groups, GTM 42, Springer, New York, 1977. MR 56:8675
  • [Sm] Smith, P.A., New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415. MR 23:A2880

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57S17, 57S25

Retrieve articles in all journals with MSC (1991): 57S17, 57S25


Additional Information

Erkki Laitinen
Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, ul. Jana Matejki 48/49, PL–60–769 Poznań, Poland
Email: kpa@math.amu.edu.pl

Krzysztof Pawalowski
Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, ul. Jana Matejki 48/49, PL–60–769 Poznań, Poland

DOI: https://doi.org/10.1090/S0002-9939-99-04544-X
Keywords: Finite perfect group, action on sphere, Smith equivalence of representations
Received by editor(s): August 30, 1996
Received by editor(s) in revised form: May 10, 1997
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society