Nowhere monotone functions and functions of nonmonotonic type
Authors:
Jack B. Brown, Udayan B. Darji and Eric P. Larsen
Journal:
Proc. Amer. Math. Soc. 127 (1999), 173182
MSC (1991):
Primary 26A48; Secondary 26A24
MathSciNet review:
1469402
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We investigate the relationships between the notions of a continuous function being monotone on no interval, monotone at no point, of monotonic type on no interval, and of monotonic type at no point. In particular, we characterize the set of all points at which a function that has one of the weaker properties fails to have one of the stronger properties. A theorem of Garg about level sets of continuous, nowhere monotone functions is strengthened by placing control on the location in the domain where the level sets are large. It is shown that every continuous function that is of monotonic type on no interval has large intersection with every function in some second category set in each of the spaces , and .
 1.
Andrew
Bruckner, Differentiation of real functions, 2nd ed., CRM
Monograph Series, vol. 5, American Mathematical Society, Providence,
RI, 1994. MR
1274044 (94m:26001)
 2.
A.
M. Bruckner and K.
M. Garg, The level structure of a residual set
of continuous functions, Trans. Amer. Math.
Soc. 232 (1977),
307–321. MR 0476939
(57 #16487), http://dx.doi.org/10.1090/S0002994719770476939X
 3.
U. B. Darji, Two general extension theorems, submitted.
 4.
K.
M. Garg, On nowhere monotone functions. I. Derivatives at a
residual set, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
5 (1962), 173–177. MR 0146317
(26 #3839)
 5.
K.
M. Garg, On nowhere monotone functions. II. Derivates at sets of
power 𝑐 and at sets of positive measure, Rev. Math. Pures
Appl. (Bucarest) 7 (1962), 663–671. MR 0177075
(31 #1339)
 6.
K.
M. Garg, On nowhere monotone functions. III. (Functions of first
and second species), Rev. Math. Pures Appl. 8 (1963),
83–90. MR
0151560 (27 #1545)
 7.
K.
M. Garg, On level sets of a continuous nowhere monotone
function, Fund. Math. 52 (1963), 59–68. MR 0143855
(26 #1405)
 8.
K.
M. Garg, Construction of absolutely continuous and singular
functions that are nowhere of monotonic type, Classical real analysis
(Madison, Wis., 1982) Contemp. Math., vol. 42, Amer. Math. Soc.,
Providence, RI, 1985, pp. 61–79. MR 807979
(87d:26008), http://dx.doi.org/10.1090/conm/042/807979
 9.
K.
Kuratowski, Topology. Vol. I, New edition, revised and
augmented. Translated from the French by J. Jaworowski, Academic Press, New
York, 1966. MR
0217751 (36 #840)
K.
Kuratowski, Topology. Vol. II, New edition, revised and
augmented. Translated from the French by A. Kirkor, Academic Press, New
York, 1968. MR
0259835 (41 #4467)
 10.
S.
Marcus, Sur les fonctions continues qui ne sont monotones en aucun
intervalle., Rev. Math. Pures Appl. 3 (1958),
101–105 (French). MR 0107680
(21 #6403)
 11.
John
C. Oxtoby, Measure and category. A survey of the analogies between
topological and measure spaces, SpringerVerlag, New York, 1971.
Graduate Texts in Mathematics, Vol. 2. MR 0393403
(52 #14213)
 12.
K.
Padmavally, On the roots of equation
𝑓(𝑥)=𝜉 where 𝑓(𝑥) is real and
continuous in (𝑎,𝑏) but monotonic in no subinterval of
(𝑎,𝑏), Proc. Amer. Math.
Soc. 4 (1953),
839–841. MR 0059341
(15,513h), http://dx.doi.org/10.1090/S00029939195300593413
 13.
G.
Petruska and M.
Laczkovich, Baire 1 functions, approximately continuous functions
and derivatives, Acta Math. Acad. Sci. Hungar. 25
(1974), 189–212. MR 0379766
(52 #671)
 14.
S. Saks, Theory of the Integral, Monografie Mat., Vol. 7, PWN, Warsaw, 1937.
 15.
W. Sierpi\'{n}ski, Sur l'ensemble de valeurs qu'une fonction continue prend une infinité non dénombrable de fois, Fund. Math. 8 (1926), 370373.
 16.
A.
Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge
University Press, New York, 1959. MR 0107776
(21 #6498)
 1.
 A. M. Bruckner, Differentiation of Real Functions, CRM Monograph Series Vol. 5, Amer. Math. Soc., Providence, 1994. MR 94m:26001
 2.
 A. M. Bruckner and K. M. Garg, The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc. 232 (1977), 307321. MR 57:16487
 3.
 U. B. Darji, Two general extension theorems, submitted.
 4.
 K. M. Garg, On nowhere monotone functions. I. Derivates at residual set, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 5 (1962), 173177. MR 26:3839
 5.
 , On nowhere monotone functions. II. Derivates at sets of power c and at sets of positive measure, Rev. Math. Pures Appl. 7 (1962) 663671. MR 31:1339
 6.
 , On nowhere monotone functions. III. (Functions of first and second species), Rev. Math. Pures Appl. 8 (1963) 8390. MR 27:1545
 7.
 , On level sets of a continuous nowhere monotone function, Fund. Math. 52 (1963), 5968. MR 26:1405
 8.
 , Construction of absolutely continuous and singular functions that are nowhere of monotonic type, Contemp. Math. 42 (1985), 6179. MR 87d:26008
 9.
 C. Kuratowski, Topology. I and II, Academic Press, New York 1966, 1968. MR 36:840; MR 41:4467
 10.
 S. Marcus, Sur les fonctions continues qui ne sont monotones en aucun intervalle, Rev. Math. Pures Appl. 3 (1958), 101105. MR 21:6403
 11.
 J. Oxtoby, Measure and Category, SpringerVerlag, New York 1971. MR 52:14213
 12.
 K. Padmavally, On the roots of equation where is real and continuous in but monotonic in no subinterval of , Proc. Amer. Math. Soc. 4 (1953), 839841. MR 15:513h
 13.
 G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions, and derivatives, Acta. Math. Hungar. 25 (1974), 189212. MR 52:671
 14.
 S. Saks, Theory of the Integral, Monografie Mat., Vol. 7, PWN, Warsaw, 1937.
 15.
 W. Sierpi\'{n}ski, Sur l'ensemble de valeurs qu'une fonction continue prend une infinité non dénombrable de fois, Fund. Math. 8 (1926), 370373.
 16.
 A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, London, 1959. MR 21:6498
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
26A48,
26A24
Retrieve articles in all journals
with MSC (1991):
26A48,
26A24
Additional Information
Jack B. Brown
Affiliation:
Department of Mathematics, Auburn University, Auburn, Alabama 368495310
Email:
brownj4@mail.auburn.edu
Udayan B. Darji
Affiliation:
Department of Mathematics, University of Louisville, Louisville, Kentucky 402920001
Email:
ubdarj01@homer.louisville.edu
Eric P. Larsen
Email:
larseep@mail.auburn.edu
DOI:
http://dx.doi.org/10.1090/S0002993999045712
PII:
S 00029939(99)045712
Keywords:
Nowhere monotone,
nonmonotonic type,
level sets
Received by editor(s):
August 20, 1996
Received by editor(s) in revised form:
May 7, 1997
Additional Notes:
Work was begun on this paper while the first two authors were participants at the Nineteenth Summer Symposium in Real Analysis, held in Erice, Italy, June 13–20, 1995. The first author acknowledges support from NSF EPSCoR in Alabama, which allowed him to attend this symposium.
Communicated by:
J. Marshall Ash
Article copyright:
© Copyright 1999 American Mathematical Society
