Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Two-weighted estimations for the
Hardy-Littlewood maximal function
in ideal Banach spaces


Author: E. I. Berezhnoi
Journal: Proc. Amer. Math. Soc. 127 (1999), 79-87
MSC (1991): Primary 42B20, 42B25
DOI: https://doi.org/10.1090/S0002-9939-99-04998-9
MathSciNet review: 1622773
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give conditions on a couple of ideal Banach spaces with weights which are both necessary and sufficient for the Hardy-Littlewood maximal function to satisfy the two-weighted estimations of weak type, and we consider a modification of the Hardy-Littlewood maximal function. We also give some conditions on weights in order for the Hardy-Littlewood maximal function and the modification under consideration to fulfil the two-weighted estimations of strong type.


References [Enhancements On Off] (What's this?)

  • 1. E. I. Berezhnoi, Sharp estimates for operators on cones in ideal spaces, Trudy Mat. Inst. Steklov. 204 (1993), 3-36; English transl. in Proc. Steklov Inst. Math. 1994, no. 3 (204). MR 96a:46052
  • 2. H. M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal functions on $L(p,q)$ spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120. MR 83b:42021
  • 3. E. M. Dynkin and B. P. Osilenkier, Weighted estimations of singular operators and their applications, Itogi Nauki i Tekhniki: Mat. Anal., vol. 21, VINITI, Moskow, 1983, pp. 42-130 (Russian); English transl. in J. Soviet Math. 30 (1985), no. 3.
  • 4. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, Math. Studies 116, North-Holland, Amsterdam, 1985. MR 87d:42023
  • 5. Z. G. Gorgadze and V. I. Tarieladze, On geometry of Orlicz spaces, Lecture Notes in Math. 828 (1980), 47-51. MR 82h:46049
  • 6. B. Jawerth, Weighted inequalities for maximal operators, Amer. J. of Math. 108 (1986), 361-414. MR 87f:42048
  • 7. V. M. Kokilashvili, The maximal functions and the integrals of the potential type in the Lebesgue and Lorentz spaces, Trudy MIAN SSSR 172 (1985), 192-201 (Russian).
  • 8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function Spaces, Springer-Verlag, 1979. MR 81c:46001
  • 9. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-227. MR 45:2461
  • 10. S. Ya. Novikov, Cotype and type of Lorentz function spaces, 32, 2 (1982), 213-221; English transl. in Math. Notes 32 (1982). MR 84d:46031
  • 11. C. Perez, Two weighted norm inequalities for the Riesz potentials and uniform $L^p$-weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), 31-44.
  • 12. E. T. Sawyer, A characterization for two weight norm inequalities for maximal operators, Studia Math. 75 (1982), 1-11.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B20, 42B25

Retrieve articles in all journals with MSC (1991): 42B20, 42B25


Additional Information

E. I. Berezhnoi
Email: smirn@gw.yspu.yar.ru

DOI: https://doi.org/10.1090/S0002-9939-99-04998-9
Received by editor(s): December 11, 1991
Received by editor(s) in revised form: September 19, 1996
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society