Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some remarks on the real rank
of non-unital C*-algebras


Author: Takashi Sakamoto
Journal: Proc. Amer. Math. Soc. 127 (1999), 205-210
MSC (1991): Primary 46L05
DOI: https://doi.org/10.1090/S0002-9939-99-05030-3
MathSciNet review: 1623052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a non-unital C$^{*}$-algebra $A$, let $A^{\sim }$ be the C$^{*}$-algebra obtained from $A$ by adjoining an identity. In this paper we show that

\begin{displaymath}{\text{\rm RR}}( C_{0}(X) \otimes A)={\text{\rm RR}} ( C_{0}(X) \otimes A^{\sim }) ,\end{displaymath}

where $X$ is a locally compact Hausdorff space with ${\text{\rm RR}}( C_{0}(X) ) \le 1$.


References [Enhancements On Off] (What's this?)

  • 1. E. J. Beggs and D. E. Evans, The real rank of matrix valued functions, Internat. J. Math. 2 (1991), 131-138. MR 92e:46114
  • 2. L. G. Brown and G. K. Pedersen, $C^{*}$-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149. MR 92m:46086
  • 3. R. Engelking, Theory of Dimensions Finite and Infinite, Sigma Ser. in Pure Math. vol.10, Heldermann Verlag, 1995. MR 97j:54033
  • 4. M. Nagisa, H. Osaka and N. C. Phillips, Rank of non-commutative algebras of continuous $C^{*}$-algebra valued functions over the interval, Preliminary version.
  • 5. M. A. Rieffel, Dimension and stable rank in the K-theory of $C^{*}$-algebras, Proc. London Math. Soc. 46 (1987), 301-333. MR 84g:46085
  • 6. S. Zhang, Certain $C^{*}$-algebras with real rank zero and their corona and multiplier algebras. Part I, Pacific J. Math. 155 (1992), 169-197. MR 94i:46093

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L05

Retrieve articles in all journals with MSC (1991): 46L05


Additional Information

Takashi Sakamoto
Affiliation: Department of Mathematics and Informatics, Graduate School of Science and Technology, Chiba University, 1-33, Yayoi-Cho, Inage-Ku, Chiba 263-8522, Japan
Email: msakamot@math.s.chiba-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-05030-3
Keywords: C$^{*}$-algebra, real rank, stable rank
Received by editor(s): May 9, 1997
Communicated by: David R. Larson
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society