Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gradient estimates for positive solutions
of the Laplacian with drift


Authors: Benito J. González and Emilio R. Negrin
Journal: Proc. Amer. Math. Soc. 127 (1999), 619-625
MSC (1991): Primary 58G11
DOI: https://doi.org/10.1090/S0002-9939-99-04578-5
MathSciNet review: 1469407
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $M$ be a complete Riemannian manifold of dimension $n$ without boundary and with Ricci curvature bounded below by $-K,$ where $K\geq 0.$ If $b$ is a vector field such that $\Vert b\Vert \leq \gamma $ and $\nabla b\leq K_{*}$ on $M,$ for some nonnegative constants $\gamma $ and $K_{*},$ then we show that any positive $\mathcal{C}^{\infty }(M)$ solution of the equation $\Delta u(x)+(b(x)|\nabla u(x))=0$ satisfies the estimate

\begin{displaymath}{\frac{{\Vert \nabla u\Vert }^2}{u^2}}\leq \frac{n(K+K_{*})}w+\frac{{\gamma }^2}{w(1-w)}\;, \end{displaymath}

on $M$, for all $w \in (0,1).$ In particular, for the case when $K=K_{*}=0,$ this estimate is advantageous for small values of $\Vert b\Vert $ and when $b\equiv 0$ it recovers the celebrated Liouville theorem of Yau (Comm. Pure Appl. Math. 28 (1975), 201-228).


References [Enhancements On Off] (What's this?)

  • 1. E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1957), 45-56. MR 19:1056e
  • 2. S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354. MR 52:6608
  • 3. E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, UK, 1990. MR 92a:35035
  • 4. J.-D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, Boston, 1989. MR 90h:60026
  • 5. J.-D. Deuschel and D.W. Stroock, Hypercontractivity and Spectral Gap of Symmetric Diffusions with Applications to the Stochastic Ising Models, J. Funct. Anal. 92 (1990), 30-48. MR 91j:58174
  • 6. J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), 233-256. MR 92k:58257
  • 7. P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. MR 87f:58156
  • 8. E.R. Negrin, Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Funct. Anal. 127 (1995), 198-203. MR 96a:58175
  • 9. A.G. Setti, Gaussian estimates for the heat kernel of the weighted Laplacian and fractal measures, Canad. J. Math. 44 (5) (1992), 1061-1078. MR 94f:58124
  • 10. S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 55:4042

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58G11

Retrieve articles in all journals with MSC (1991): 58G11


Additional Information

Benito J. González
Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 Canary Islands, Spain
Email: bjglez@ull.es

Emilio R. Negrin
Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 Canary Islands, Spain
Email: enegrin@ull.es

DOI: https://doi.org/10.1090/S0002-9939-99-04578-5
Keywords: Gradient estimate, Laplacian with drift, Bochner-Lichn\`erowicz-Weitzenb\"ock formula, Liouville theorem
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society