Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Multinomial coefficients modulo a prime


Author: Nikolai A. Volodin
Journal: Proc. Amer. Math. Soc. 127 (1999), 349-353
MSC (1991): Primary 11B65, 11B50
MathSciNet review: 1628428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We say that the multinomial coefficient (m.c.) $(j_1,\dots, j_l)=n!/ (j_1!\cdots j_l!)$ has order $l$ and power $n=j_1+\cdots+j_l$. Let $G(n,l,p)$ be the number of m.c. that are not divisible by $p$ and have order $l$ with powers which are not larger than $n$. If $\theta =\log _p(l,p-1)$ and

\begin{displaymath}q_{l,p}^{(r)}=\min _{p^r\le n<p^{r+1}} G(n,l,p)/ (n+1)^\theta, \end{displaymath}

then for any integer $r=1,2,\dots$

\begin{displaymath}0<q_{l,p}^{(r)}-\liminf _{n\to\infty} G(n,l,p)/n^\theta\le\frac 1{\theta p^r} \left(1+\frac 1{p^r}\right)^{\theta-1}. \end{displaymath}


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11B65, 11B50

Retrieve articles in all journals with MSC (1991): 11B65, 11B50


Additional Information

Nikolai A. Volodin
Affiliation: The Australian Council for Educational Research, Camberwell 3124, Melbourne, Victoria, Australia
Email: volodin@acer.edu.au

DOI: http://dx.doi.org/10.1090/S0002-9939-99-05079-0
PII: S 0002-9939(99)05079-0
Received by editor(s): May 19, 1997
Communicated by: David E. Rohrlich
Article copyright: © Copyright 1999 American Mathematical Society