On the non-productivity

of normality in Moore spaces

Authors:
H. Cook and G. M. Reed

Journal:
Proc. Amer. Math. Soc. **127** (1999), 875-880

MSC (1991):
Primary 54E30, 54D15, 54A35; Secondary 54B10, 54A10

DOI:
https://doi.org/10.1090/S0002-9939-99-04051-4

MathSciNet review:
1415580

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Under Martin's Axiom and the denial of the Continuum Hypothesis, the authors give examples of normal Moore spaces whose squares are not normal.

**[AP1976]**K. Alster and T. C. Przymusi\'{n}ski,*Normality and Martin's Axiom*, Fund. Math.**91**(1976), 124-130. MR**54:3652****[C1968]**H. Cook,*Cartesian products and continuous semi-metrics*, Proc. of the Arizona State University Top. Conf. (1968), 58-63.**[C1976]**-,*Cartesian products and continuous semi-metrics*, II, preprint, 1976.**[CF1968]**H. Cook and B. Fitzpatrick,*Inverse limits of perfectly normal Moore spaces*, Proc. Amer. Math. Soc.**19**(1968), 189-192. MR**36:3306****[DS1979]**K. J. Devlin and S. Shelah,*A note on the normal Moore space conjecture*, Canad. J. Math.**31**, 241-251. MR**81d:54022****[FT1966]**B. Fitzpatrick and D. R. Traylor,*Two theorems on metrizability of Moore spaces*, Pac. J. Math.**19**(1966), 259-264. MR**34:3535****[Fl1974]**W. G. Fleissner,*Normal Moore spaces in the constructible universe*, Proc. Amer. Math. Soc.**46**(1974), 294-298. MR**50:14682****[Fl1982]**-,*Normal non-metrizable Moore space from continuum hypothesis or nonexistence of inner models with measurable cardinals*, Proc. Nat. Acad. Sci. U.S.A.**79**(1982), 1371-1372. MR**84f:54040****[Jo1937]**F. B. Jones,*Concerning normal and completely normal spaces*, Bull. Amer. Math. Soc.**43**(1937), 671-677.**[K1948]**M. Katetov,*Complete normality of Cartesian products*, Fund. Math.**35**(1948), 271-274. MR**10:315h****[K1986]**K. Kunen,*On ordinal-metric intersection topologies*, Topology Appl.**22**(1986), 315-319. MR**87i:54046****[M1962]**R. L. Moore,*Foundations of point set theory*, Amer. Math. Soc. Colloq. Publ.**13**, 1932 (revised edition, 1962). MR**27:709****[P1977]**T. C. Przymusi\'{n}ski,*Normality and separability of Moore spaces*, Set-Theoretic Topology, Acad. Press (NY, 1977), 325-337. MR**56:6617****[R1974a]**G. M. Reed,*On chain conditions in Moore spaces*, Gen. Top. and Appl.**4**(1974), 255-267. MR**49:9815****[R1974b]**-,*On continuous images of Moore spaces*, Canad. J. Math.**26**(1974), 1475-1479. MR**53:1530****[R1975]**-,*On the productivity of normality in Moore spaces*, Studies in Topology, Acad. Press (NY, 1975), 479-484. MR**53:1531****[R1986]**-,*The intersection topology w.r.t. the real line and the countable ordinals*, Trans. Amer. Math. Soc.**297**(1986), 509-520. MR**87m:54003****[R1990]**-,*Set-theoretic problems in Moore spaces*, Open Problems in Topology, North Holland (Amsterdam, 1990), 163-181.**[R]**-,*-sets, stationary sets in , and normal Moore spaces*, to appear.**[RZ1976]**G. M. Reed and P. L. Zenor,*Metrization of Moore spaces and generalized manifolds*, Fund. Math.**91**(1976), 213-220. MR**54:13868****[T1969]**F. D. Tall,*Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems*, Ph.D. thesis, University of Wisconsin, 1969; Dissert. Math. 148, 1-53. MR**56:13156****[T1984]**-,*Normality versus collectionwise normality*, Handbook of Set-Theoretic Topology (North Holland, 1984), 685-732. MR**86m:54022**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54E30,
54D15,
54A35,
54B10,
54A10

Retrieve articles in all journals with MSC (1991): 54E30, 54D15, 54A35, 54B10, 54A10

Additional Information

**H. Cook**

Affiliation:
Department of Mathematics, University of Houston, Houston, Texas 77004

**G. M. Reed**

Affiliation:
St Edmund Hall, Oxford OX1 4AR, England

Email:
mike.reed@comlab.ox.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-99-04051-4

Keywords:
Moore spaces,
normality,
products,
Martin's Axiom,
intersection topology.

Received by editor(s):
March 6, 1991

Communicated by:
Franklin D. Tall

Article copyright:
© Copyright 1999
American Mathematical Society