A VARIANT OF THE DIAMOND PRINCIPLE FOR COMBINATORIAL IDEALS

Y. ABE

(Communicated by Andreas R. Blass)

Abstract. We use a variant of the diamond principle to show many ideals on \(\kappa \) are not \(2^{\kappa} \)-saturated if \(\kappa \) is large. For instance, the \(\Pi_1^1 \)-indescribable ideal is not \(2^{\kappa} \)-saturated if \(\kappa \) is almost ineffable.

Kunen proved that the diamond principle for \(\kappa \), \(\diamondsuit(\kappa) \) holds if \(\kappa \) is subtle. A consequence of \(\diamondsuit(\kappa) \) is that the nonstationary ideal on \(\kappa \) is not \(2^{\kappa} \)-saturated.

Meanwhile Baumgartner, Taylor and Wagon [2] proved that the ethereal ideal on \(\kappa \) is not \(\kappa^+ \)-saturated if \(\kappa \) is almost ineffable.

These two facts have a point in common. If \(\kappa \) has a strong property, then an ideal corresponding to a weaker property is less saturated.

For a regular uncountable cardinal \(\kappa \), \(\diamondsuit(\kappa) \) can be regarded as a property of the nonstationary ideal. We consider the following principle for an ideal \(I \) on \(\kappa \):

The Diamond Principle for \(I \), \(\diamondsuit(I) \). There is a sequence \(\langle S_\alpha \subset \alpha \mid \alpha < \kappa \rangle \) such that for every \(X \subset \kappa \),

\[
\{ \alpha < \kappa \mid X \cap \alpha = S_\alpha \} \notin I.
\]

We modify Kunen’s construction of a diamond sequence assuming \(\kappa \) has a sufficiently strong property so that \(\diamondsuit(I) \) holds. It is clear that no ideal \(J \subseteq I \) is \(2^{\kappa} \)-saturated if \(\diamondsuit(I) \) holds. Specifically we prove the following.

Theorem. (1) If \(\kappa \) is almost ineffable, then any ideal extended by the \(\Pi_1^1 \)-indescribable ideal on \(\kappa \) is not \(2^{\kappa} \)-saturated.

(2) If \(\kappa \) is completely ineffable, then any ideal extended by the ineffable ideal on \(\kappa \) is not \(2^{\kappa} \)-saturated.

Before proving the theorem we state the definition of these ideals. Throughout the rest of this paper, \(\kappa \) is a regular uncountable cardinal and \(I \) is a \(\kappa \)-complete ideal on \(\kappa \). The filter dual to an ideal \(I \) is denoted by \(I^* \), and \(I^+ \) is the set \(\{ X \subset \kappa \mid X \notin I \} \).

Definition. Let \(X \subset \kappa \).

(i) \(X \) is \(\Pi_1^1 \)-indescribable if for any \(R \subset V_\kappa \) and \(\Pi_1^1 \) sentence \(\varphi \) such that \(\langle V_\kappa, \in, R \rangle \models \varphi \), there is \(\alpha \in X \) such that \(\langle V_\alpha, \in, R \cap V_\alpha \rangle \models \varphi \).

(ii) \(X \) is almost ineffable if for any sequence \(\langle S_\alpha \subset \alpha \mid \alpha < \kappa \rangle \) there is \(S \subset \kappa \) such that \(\{ \alpha \in X \mid S_\alpha = S \cap \alpha \} \) is unbounded in \(\kappa \).
(iii) X is *ineffable* if for any sequence $(S_\alpha \subset \alpha \mid \alpha < \kappa)$ there is $S \subset \kappa$ such that \{\alpha \in X \mid S_\alpha = S \cap \alpha\} is stationary in κ.

(iv) The *completely ineffable ideal* on κ is the minimal normal ideal I such that for any $X \in I^+$ and any sequence $(S_\alpha \subset \alpha \mid \alpha < \kappa)$ there is $S \subset \kappa$ such that \{\alpha \in X \mid S_\alpha = S \cap \alpha\} \in I^+$. $X \in I^+$ is called *completely ineffable*.

(v) X is *subtle* if for any sequence $(S_\alpha \subset \alpha \mid \alpha < \kappa)$ and C closed unbounded in κ, there exist $\alpha < \beta$ both in $C \cap X$ such that $S_\alpha = S_\beta \cap \alpha$.

For each property A stated above, we consider the set
\[\{X \subset \kappa \mid X \text{ does not have property } A\},\]
which is a normal ideal on κ. For instance the Π^1_1-indescribable ideal is the set
\[\{X \subset \kappa \mid X \text{ is not } \Pi^1_1\text{-indescribable}\}.

These ideals were studied in Baumgartner [1] and Johnson [4].

Proof of the Theorem. (1) Suppose that κ is almost ineffable. Let $NAIn_\kappa$ denote the almost ineffable ideal on κ and P_α the Π^1_1-indescribable ideal on α for $\alpha \leq \kappa$. We use the fact that $P_\kappa \subset NAIn_\kappa$ and for every $X \in P_\kappa^*$,
\[\{\alpha \in X \mid X \cap \alpha \in P_\alpha^*\} \in NAIn_\kappa^*.

We recursively define (S_α, C_α) for $\alpha < \kappa$ such that $S_\alpha \subset \alpha$ and $C_\alpha \in P_\alpha^*$ as follows.

Suppose that $\alpha < \kappa$ and (S_β, C_β) has been defined for $\beta < \alpha$. Set $(S_\alpha, C_\alpha) = (\emptyset, \alpha)$ except in the case that
\[(\triangledown) \text{ There exist } S \subset \alpha \text{ and } C \in P_\alpha^* \text{ such that } S \cap \beta \neq S_\beta \text{ for any } \beta \in C.

In this case, let (S_α, C_α) be one such pair (S, C).

We show that $(S_\alpha \mid \alpha < \kappa)$ is a diamond sequence for P_κ. Suppose to the contrary that there are $X \subset \kappa$ and $C \in P_\kappa^*$ such that $X \cap \alpha \neq S_\alpha$ for $\alpha \in C$. Let $D = \{\alpha \in C \mid C \cap \alpha \neq S_\alpha\}$. For $\alpha \in D$, $(S \cap \alpha, C \cap \alpha)$ satisfies the condition of (\triangledown). Hence $C_\alpha \in P_\alpha^*$ and $S_\alpha \cap \beta \neq S_\beta$ for $\beta \in C_\alpha$. Since $D \in NAIn_\kappa^*$, D is subtle. By Theorem 4.1 in Baumgartner [1],
\[\{\alpha \in D \mid \{\beta \in D \cap \alpha \mid S_\beta \neq S_\alpha \cap \beta\} \in P_\alpha\} \text{ is not subtle.}\]

Thus we have
\[E = \{\alpha \in D \mid \{\beta \in D \cap \alpha \mid S_\beta = S_\alpha \cap \beta\} \in P_\alpha^+\} \in NAIn_\kappa^*.

For any $\alpha \in E$, $C_\alpha \in P_\alpha^*$. Hence we can find $\beta \in C_\alpha$ such that $S_\beta = S_\alpha \cap \beta$ contradicting the definition of (S_α, C_α).

(2) Suppose that κ is completely ineffable. Let $NCIn_\kappa$ denote the completely ineffable ideal on κ and $NIIn_\kappa$ the ineffable ideal on α for $\alpha \leq \kappa$. We need only replace P_α by $NIIn_\kappa^*$ in the definition of (S_α, C_α) to get a diamond sequence for $NIIn_\kappa^*$.

Consider the notion of forcing $Q = (NCIn_\kappa^+, \subseteq)$ and let G be a V generic filter on Q and $M = Ult_G(V)$ the generic ultrapower. Since $NCIn_\kappa$ is normal (κ, κ) distributive, $V_{\kappa+1}^V = V_{\kappa+1}^M$. (See [3], [4].) Hence, $NIIn_\kappa^V = NIIn_\kappa^M$ and, for any $X \in NIIn_\kappa^*$,
\[\{\alpha \in X \mid X \cap \alpha \in NIIn_\kappa^*\} \in NCIn_\kappa^*.

If \(\langle S_\alpha \mid \alpha < \kappa \rangle \) is not a diamond sequence for \(N_{\text{In}} \kappa \), there is \(Y \in N_{\text{In}}^* \kappa \subset N_{\text{CIn}}^* \kappa \) such that, for any \(\alpha \in Y \),

\[
C_\alpha \in N_{\text{In}}^* \kappa \text{ and } S_\beta \neq S_\alpha \cap \beta \text{ for } \beta \in C_\alpha.
\]

By complete ineffability, there exist \(T, U \subset \kappa \) such that

\[
H = \{ \beta \in Y \mid S_\alpha = T \cap \alpha \text{ and } C_\alpha = U \cap \alpha \} \in N_{\text{CIn}}^+ \kappa.
\]

Since \(H \models U \in N_{\text{In}}^* \kappa \), \(U \cap H \in N_{\text{In}}^+ \kappa \). For any \(\beta < \alpha \) both in \(U \cap H \), \(\beta \in U \cap \alpha = C_\alpha \) and \(S_\beta = T \cap \beta = (T \cap \alpha) \cap \beta = S_\alpha \cap \beta \), which contradicts the fact that \(\alpha \in Y \).

There are several facts which can be proved by the same argument. For instance:

- If \(\kappa \) is ineffable, then the \(\Pi_1^1 \)-indescribable ideal on \(\kappa \) is not \(2^\kappa \)-saturated.
- If \(\kappa \) is 2-subtle, then the ineffable ideal on \(\kappa \) is not \(2^\kappa \)-saturated.
- If \(\kappa \) is measurable, then the completely ineffable ideal on \(\kappa \) is not \(2^\kappa \)-saturated.

Such an argument can be carried out for ideals on \(P_{\kappa \lambda} \) as well.

Johnson proved in [4] that the completely ineffable ideal is not precipitous if \(\kappa \) is completely ineffable. Thus it seems natural to ask:

Question. (1) Can it be proved that these combinatorial ideals mentioned above are not precipitous?

(2) Is it possible to prove the ideal corresponding to property \(A \) is not \(2^\kappa \)-saturated just assuming \(\kappa \) has property \(A \)? For instance, in order to prove the ineffable ideal on \(\kappa \) is not \(2^\kappa \)-saturated, does it suffice to assume \(\kappa \) is ineffable?

References

