Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derived tubular strongly
simply connected algebras


Authors: M. Barot and J. A. de la Peña
Journal: Proc. Amer. Math. Soc. 127 (1999), 647-655
MSC (1991): Primary 16G10, 16G60, 18E30.
DOI: https://doi.org/10.1090/S0002-9939-99-04531-1
MathSciNet review: 1468181
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a finite dimensional algebra over an algebraically closed field $k$. Assume $A=kQ/I$ for a connected quiver $Q$ and an admissible ideal $I$ of $kQ$. We study algebras $A$ which are derived equivalent to tubular algebras. If $A$ is strongly simply connected and $Q$ has more than six vertices, then $A$ is derived tubular if and only if (i) the homological quadratic form $\chi _A$ is a non-negative of corank two and (ii) no vector of $\chi _A ^{-1}(1)$ is orthogonal (with respect tho the homological bilinear form) to the radical of $\chi _A$.


References [Enhancements On Off] (What's this?)

  • 1. I. Assem and A. Skowro\'{n}ski, On some classes of simply connected algebras, Proc. London Math. Soc. (3), 56 (1988), 417-450. MR 89f:16023a
  • 2. I. Assem and A. Skowro\'{n}ski, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. MR 89f:16023b
  • 3. I. Assem and A. Skowro\'{n}ski, Quadratic forms and iterated tilted Algebras, Journal of Algebra 128 (1990), 55-85. MR 91d:16020
  • 4. M. Barot, Representation-finite derived tubular algebras, To appear.
  • 5. R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, Journal of London Math. Soc. (2), 27 (1983), 212-220. MR 84i:16028
  • 6. K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1984), 461-469. MR 85i:16036
  • 7. K. Bongartz, Critical simply connected algebras, Manuscr. Math. 46 (1984), 117-136. MR 85j:16026
  • 8. O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40. MR 85g:16014
  • 9. P. Gabriel, B. Keller and A. V. Roiter, Representations of finite-dimensional algebras, Encycl. Math. Sc., 73 (1992), 1-176. MR 94h:16001b
  • 10. D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helvetici 62 (1987), 339-389. MR 89c:16029
  • 11. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3), 46 (1982), 346-364. MR 84m:16023
  • 12. J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manusc. Math. 61 (1988), 183-194. MR 89h:16022
  • 13. J. A. de la Peña, On the corank of the Tits form of a tame algebra, Journal of Pure and Applied Algebra 107 (1996), 89-105. MR 97h:16021
  • 14. J. A. de la Peña, The Tits form of a Tame Algebra In: Representation Theory of Algebras, Can. Math. Soc. Conference Proc., 19 (1996), 159-183. MR 97j:16022
  • 15. C. M. Ringel, Tame algebras and integral quadratic formsLecture Notes in Mathematics, Vol. 1099, Berlin, Heidelberg, New York, Springer, 1984. MR 87f:16027
  • 16. A. Skowro\'{n}ski, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199. MR 90k:16024
  • 17. A. Skowro\'{n}ski, Simply connected algebras and Hochschild cohomologies, Canadian Math. Soc., Conference Proceedings 14 (1993), 431-447. MR 94e:16016
  • 18. A. Skowro\'{n}ski, Tame algebras with simply connected Galois coverings, Preprint, Poland (1996).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16G10, 16G60, 18E30.

Retrieve articles in all journals with MSC (1991): 16G10, 16G60, 18E30.


Additional Information

M. Barot
Affiliation: Instituto de Matemáticas, UNAM, 04510 México, D.F., México
Email: barot@gauss.matem.unam.mx

J. A. de la Peña
Affiliation: Instituto de Matemáticas, UNAM, 04510 México, D.F., México
Email: jap@penelope.matem.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-99-04531-1
Received by editor(s): December 2, 1996
Received by editor(s) in revised form: June 12, 1997
Additional Notes: This work was partially supported by CONACYT and DGAPA, UNAM
Communicated by: Ken Goodearl
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society