A new characterization of

for countable spectra of (LB)-spaces

Author:
Jochen Wengenroth

Journal:
Proc. Amer. Math. Soc. **127** (1999), 737-744

MSC (1991):
Primary 46A13, 46M15

DOI:
https://doi.org/10.1090/S0002-9939-99-04559-1

MathSciNet review:
1468208

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The derived projective limit functor Proj¹ is a very useful tool for investigating surjectivity problems in various parts of analysis (e.g. solvability of partial differential equations).

We provide a new characterization for vanishing Proj¹ on projective spectra of (LB)-spaces which improves a classical result of V. P. Palamodov and V. S. Retakh.

**1.**J. Bonet, P. Doma\'{n}ski,*Real analytic curves in Fréchet spaces and their duals*, Monatsh. Math., to appear.**2.**N. Bourbaki,*Eléments de mathématique, Topologie Générale I*, Hermann, Paris (1974). MR**50:11111****3.**R. W. Braun, R. Meise, D. Vogt,*Applications of the projective limit functor to convolutions and partial differential equations*, pp. 29-46 in Advances in the Theory of Fréchet spaces, T. Terzio[??]glu (ed.), NATO ASF Ser. C**287**, Kluwer, Dordrecht (1989). MR**92b:46119****4.**R. W. Braun, R. Meise, D. Vogt,*Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions*, Proc. London Math. Soc.**61**(1990), 344-370. MR**91i:46038****5.**R. W. Braun, D. Vogt,*A sufficient condition for*, Michigan Math. J.**44**(1997), 149-156. MR**98c:46162****6.**L. Frerick, J. Wengenroth,*A sufficient condition for vanishing of the derived projective limit functor,*Archiv Math. (Basel)**67**(1996), 296-301. MR**97g:46095****7.**V. P. Palamodov,*The projective limit functor in the category of linear topological spaces*, Mat. Sbornik**75**(1968), 567-603 (in Russian); English transl.: Math. USSR - Sb**4**(1968), 529-558. MR**36:6898****8.**V. P. Palamodov,*Homological methods in the theory of locally convex spaces*, Uspekhi Mat. Nauk**26**(1971), 3 - 65 (in Russian); English transl.: Russian Math. Surveys**26**(1971), 1-64. MR**45:2442****9.**V. S. Retakh,*Subspaces of a countable inductive limit*, Dokl. Akad. Nauk SSSR**194**(1970), 1277-1279 (in Russian); English transl.: Soviet Math. Dokl.**11**(1970), 1384-1386. MR**44:2018****10.**D. Vogt,*On the functors Ext for Fréchet spaces*, Studia Math.**85**(1987), 163-197. MR**89a:46146****11.**D. Vogt,*Lectures on projective spectra of (DF)-spaces*, Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal (1987).**12.**D. Vogt,*Topics on projective spectra of (LB)-spaces*, pp. 11-27 in Advances in the Theory of Fréchet spaces, T. Terzio[??]glu (ed.), NATO ASF Ser. C**287**, Kluwer, Dordrecht (1989). MR**93b:46011****13.**D. Vogt,*Regularity properties of (LF)-spaces*, pp. 57-84 in Progress in Functional Analysis, North-Holland Math. Studies**170**(1992). MR**93b:46012****14.**J. Wengenroth,*Acyclic inductive spectra of Fréchet spaces*, Studia Math.**120**(3) (1996), 247-258. MR**97m:46006**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46A13,
46M15

Retrieve articles in all journals with MSC (1991): 46A13, 46M15

Additional Information

**Jochen Wengenroth**

Affiliation:
FB IV – Mathematik, Universität Trier, D – 54286 Trier, Germany

Email:
wengen@uni-trier.de

DOI:
https://doi.org/10.1090/S0002-9939-99-04559-1

Keywords:
Derived projective limit functor,
Retakh's condition,
weakly acyclic (LF)-spaces

Received by editor(s):
January 9, 1997

Received by editor(s) in revised form:
June 10, 1997

Additional Notes:
The main result of this paper was obtained during a visit at the Polytechnical University of Valencia in March 1996. The author thanks J. Bonet and A. Peris for their kind hospitality.

Communicated by:
Dale Alspach

Article copyright:
© Copyright 1999
American Mathematical Society