Counting the values taken by algebraic exponential polynomials

Authors:
G. R. Everest and I. E. Shparlinski

Journal:
Proc. Amer. Math. Soc. **127** (1999), 665-675

MSC (1991):
Primary 11B83

DOI:
https://doi.org/10.1090/S0002-9939-99-04728-0

MathSciNet review:
1485471

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an effective mean-value theorem for the values of a non-degenerate, algebraic exponential polynomial in several variables. These objects generalise simultaneously the fundamental examples of linear recurrence sequences and sums of -units. The proof is based on an effective, uniform estimate for the deviation of the exponential polynomial from its expected value. This estimate is also used to obtain a non-effective asymptotic formula counting the norms of these values below a fixed bound.

**[1]**G. R. Everest,*Counting the values taken by sums of 𝑆-units*, J. Number Theory**35**(1990), no. 3, 269–286. MR**1062335**, https://doi.org/10.1016/0022-314X(90)90118-B**[2]**G. R. Everest,*On the 𝑝-adic integral of an exponential polynomial*, Bull. London Math. Soc.**27**(1995), no. 4, 334–340. MR**1335283**, https://doi.org/10.1112/blms/27.4.334**[3]**G. R. Everest and I. E. Shparlinski,*Divisor sums of generalised exponential polynomials*, Canad. Math. Bull.**39**(1996), no. 1, 35–46. MR**1382488**, https://doi.org/10.4153/CMB-1996-005-5**[4]**Jan-Hendrik Evertse,*On sums of 𝑆-units and linear recurrences*, Compositio Math.**53**(1984), no. 2, 225–244. MR**766298****[5]**Serge Lang,*Algebraic number theory*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR**0282947****[6]**A. J. van der Poorten and H.-P. Schlickewei,*The growth conditions for recurrence sequences*, Macquarie Math. Reports 82-0041 (1982).**[7]**A. J. van der Poorten and I. Shparlinski,*On the number of zeros of exponential polynomials and related questions*, Bull. Austral. Math. Soc.**46**(1992), 401-412.**[8]**H. P. Schlickewei and Wolfgang M. Schmidt,*On polynomial-exponential equations*, Math. Ann.**296**(1993), no. 2, 339–361. MR**1219906**, https://doi.org/10.1007/BF01445109**[9]**-,*On polynomial-exponential equations, II*(to appear).**[10]**Klaus Schmidt and Tom Ward,*Mixing automorphisms of compact groups and a theorem of Schlickewei*, Invent. Math.**111**(1993), no. 1, 69–76. MR**1193598**, https://doi.org/10.1007/BF01231280**[11]**Wolfgang M. Schmidt,*Diophantine approximations and Diophantine equations*, Lecture Notes in Mathematics, vol. 1467, Springer-Verlag, Berlin, 1991. MR**1176315****[12]**T. N. Shorey and R. Tijdeman,*Exponential Diophantine equations*, Cambridge Tracts in Mathematics, vol. 87, Cambridge University Press, Cambridge, 1986. MR**891406****[13]**I. Shparlinski,*On the number of distinct prime divisors of recurrence sequences*, Matem. Zametki**42**(1987), 494-507 (Russian).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11B83

Retrieve articles in all journals with MSC (1991): 11B83

Additional Information

**G. R. Everest**

Affiliation:
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, Norfolk, United Kingdom

Email:
g.everest@uea.ac.uk

**I. E. Shparlinski**

Affiliation:
School of MPCE, Macquarie University, New South Wales 2109, Australia

Email:
igor@mpce.mq.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-99-04728-0

Received by editor(s):
June 20, 1997

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society