Counting the values taken by algebraic exponential polynomials

Authors:
G. R. Everest and I. E. Shparlinski

Journal:
Proc. Amer. Math. Soc. **127** (1999), 665-675

MSC (1991):
Primary 11B83

DOI:
https://doi.org/10.1090/S0002-9939-99-04728-0

MathSciNet review:
1485471

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an effective mean-value theorem for the values of a non-degenerate, algebraic exponential polynomial in several variables. These objects generalise simultaneously the fundamental examples of linear recurrence sequences and sums of -units. The proof is based on an effective, uniform estimate for the deviation of the exponential polynomial from its expected value. This estimate is also used to obtain a non-effective asymptotic formula counting the norms of these values below a fixed bound.

**[1]**G. R. Everest,*Counting the values taken by sums of -units*, J. Number Theory**35**(1990), 269-286. MR**91j:11015****[2]**G. R. Everest,*On the -adic integral of an exponential polynomial*, Bull. London Math. Soc.**27**(1995), 334-340. MR**96c:11137****[3]**G. R. Everest and I. E. Shparlinski,*Divisor sums of generalised exponential polynomials*, Bull. Canad. Math. Soc.**53**(1996), 35-46. MR**97g:11021****[4]**J.-H. Evertse,*On sums of -units and linear recurrences*, Compositio Math.**53**(1984), 225-244. MR**86c:11045****[5]**S. Lang,*Algebraic Number Theory*, Addison-Wesley, New York, 1970. MR**44:181****[6]**A. J. van der Poorten and H.-P. Schlickewei,*The growth conditions for recurrence sequences*, Macquarie Math. Reports 82-0041 (1982).**[7]**A. J. van der Poorten and I. Shparlinski,*On the number of zeros of exponential polynomials and related questions*, Bull. Austral. Math. Soc.**46**(1992), 401-412.**[8]**H.-P. Schlickewei and W. M. Schmidt,*On polynomial-exponential equations*, Math. Ann.**296**(1993), 339-361. MR**94e:11032****[9]**-,*On polynomial-exponential equations, II*(to appear).**[10]**K. Schmidt and T. Ward,*Mixing automorphisms of compact groups and a theorem of Schlickewei*, Invent. Math.**111**(1993), 69-76. MR**95c:22011****[11]**W. M. Schmidt,*Diophantine Approximation and Diophantine Equations, LNM # 1467*, Springer, Berlin, 1991. MR**94f:11059****[12]**T. N. Shorey and R. J. Tijdeman,*Exponential Diophantine Equations*, CUP, 1986. MR**88h:11002****[13]**I. Shparlinski,*On the number of distinct prime divisors of recurrence sequences*, Matem. Zametki**42**(1987), 494-507 (Russian).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11B83

Retrieve articles in all journals with MSC (1991): 11B83

Additional Information

**G. R. Everest**

Affiliation:
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, Norfolk, United Kingdom

Email:
g.everest@uea.ac.uk

**I. E. Shparlinski**

Affiliation:
School of MPCE, Macquarie University, New South Wales 2109, Australia

Email:
igor@mpce.mq.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-99-04728-0

Received by editor(s):
June 20, 1997

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society