Codimension 2 nonfibrators with finite fundamental groups

Author:
R. J. Daverman

Journal:
Proc. Amer. Math. Soc. **127** (1999), 881-888

MSC (1991):
Primary 55R65, 57N15, 57N10; Secondary 57S37, 57N55

DOI:
https://doi.org/10.1090/S0002-9939-99-05192-8

MathSciNet review:
1646311

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fibrators are -manifolds which automatically induce approximate fibrations, in the following sense: given any proper mapping from an -manifold onto a finite-dimensional metric space such that, up to shape, each point-preimage is a copy of the fibrator, is necessarily an approximate fibration. This paper sets forth new examples, for the case , of nonfibrators whose fundamental groups are finite.

**[Ch1]**N. Chinen,*Manifolds with nonzero Euler characteristic and codimension fibrators,*Topology Appl.**86**(1998), 151-167. CMP**98:12****[Ch2]**,*Finite groups and approximate fibrations,*preprint.**[Co]**M. M. Cohen,*A Course in Simple-Homotopy Theory,*Springer-Verlag, New York, 1973. MR**50:14762****[CD1]**D. S. Coram and P. F. Duvall,*Approximate fibrations,*Rocky Mountain J. Math.**7**(1977), 275-288. MR**56:1296****[CD2]**,*Approximate fibrations and a movability condition for maps,*Pacific J. Math.**72**(1977), 41-56. MR**57:7597****[CD3]**,*Nondegenerate -sphere mappings between spheres,*Topology Proceedings**4**(1979), 67-82. MR**81m:57008****[D1]**R. J. Daverman,*Decompositions into codimension manifolds: The nonorientable case,*Topology Appl.**24**(1986), 71-81. MR**88a:57028****[D2]**,*Submanifold decompositions that induce approximate fibrations,*Topology Appl.**33**(1989), 173-184. MR**91d:57013****[D3]**,*Manifolds with finite first homology as codimension fibrators,*Proc. Amer. Math. Soc.**113**(1991), 471-477. MR**92a:55015****[D4]**,*-Manifolds with geometric structure and approximate fibrations,*Indiana Univ. Math. J.**40**(1991), 1451-1469. MR**92m:55016****[D5]**,*Hyperhopfian groups and approximate fibrations,*Compositio Math.**86**(1993), 159-176. MR**94b:55022****[DW]**R. J. Daverman and J. J. Walsh,*Decompositions into codimension manifolds,*Trans. Amer. Math. Soc.**288**(1985), 273-291. MR**87h:57019****[G]**C. H. Giffen,*The generalized Smith conjecture,*Amer. J. Math.**88**(1966), 187-198. MR**33:6620****[Im]**Y. H. Im,*Products of surfaces that induce approximate fibrations,*Houston J. Math.**21**(1995), 339-348. MR**96c:57038****[KS]**R. C. Kirby and L. C. Siebenmann,*Normal bundles for codimension locally flat embeddings,*in Geometric Topology (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Mathematics, vol. 438, Springer-Verlag, Berlin, 1975, pp. 310-324. MR**53:4072****[RS]**C. Rourke and B. J. Sanderson,*Introduction to Piece-wise Linear Topology*, Springer-Verlag, Berlin, 1972. MR**50:3236****[Z]**E. C. Zeeman,*Twisting spun knots,*Trans. Amer. Math. Soc.**115**(1965), 471-495. MR**33:3290**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
55R65,
57N15,
57N10,
57S37,
57N55

Retrieve articles in all journals with MSC (1991): 55R65, 57N15, 57N10, 57S37, 57N55

Additional Information

**R. J. Daverman**

Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300

Email:
daverman@novell.math.utk.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05192-8

Keywords:
Approximate fibration,
fibrator,
homotopy equivalence,
degree,
local winding function,
Lens space,
hopfian manifold,
locally flat

Received by editor(s):
May 24, 1997

Additional Notes:
This research was supported in part by NSF Grant DMS-9401086.

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 1999
American Mathematical Society