Codimension 2 nonfibrators with finite fundamental groups
Author:
R. J. Daverman
Journal:
Proc. Amer. Math. Soc. 127 (1999), 881888
MSC (1991):
Primary 55R65, 57N15, 57N10; Secondary 57S37, 57N55
MathSciNet review:
1646311
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Fibrators are manifolds which automatically induce approximate fibrations, in the following sense: given any proper mapping from an manifold onto a finitedimensional metric space such that, up to shape, each pointpreimage is a copy of the fibrator, is necessarily an approximate fibration. This paper sets forth new examples, for the case , of nonfibrators whose fundamental groups are finite.
 [Ch1]
N. Chinen, Manifolds with nonzero Euler characteristic and codimension fibrators, Topology Appl. 86 (1998), 151167. CMP 98:12
 [Ch2]
, Finite groups and approximate fibrations, preprint.
 [Co]
Marshall
M. Cohen, A course in simplehomotopy theory, SpringerVerlag,
New YorkBerlin, 1973. Graduate Texts in Mathematics, Vol. 10. MR 0362320
(50 #14762)
 [CD1]
D.
S. Coram and P.
F. Duvall Jr., Approximate fibrations, Rocky Mountain J. Math.
7 (1977), no. 2, 275–288. MR 0442921
(56 #1296)
 [CD2]
Donald
Coram and Paul
Duvall, Approximate fibrations and a movability condition for
maps, Pacific J. Math. 72 (1977), no. 1,
41–56. MR
0467745 (57 #7597)
 [CD3]
D.
Coram and P.
Duvall, Nondegenerate 𝑘sphere mappings between
spheres, The Proceedings of the 1979 Topology Conference (Ohio Univ.,
Athens, Ohio, 1979), 1979, pp. 67–82 (1980). MR 583689
(81m:57008)
 [D1]
R.
J. Daverman, Decompositions into codimension two submanifolds: the
nonorientable case, Topology Appl. 24 (1986),
no. 13, 71–81. Special volume in honor of R. H. Bing
(1914–1986). MR 872479
(88a:57028), http://dx.doi.org/10.1016/01668641(86)900507
 [D2]
R.
J. Daverman, Submanifold decompositions that induce approximate
fibrations, Topology Appl. 33 (1989), no. 2,
173–184. MR 1020279
(91d:57013), http://dx.doi.org/10.1016/S01668641(89)800069
 [D3]
Robert
J. Daverman, Manifolds with finite first homology
as codimension 2 fibrators, Proc. Amer. Math.
Soc. 113 (1991), no. 2, 471–477. MR 1086581
(92a:55015), http://dx.doi.org/10.1090/S00029939199110865810
 [D4]
Robert
J. Daverman, 3manifolds with geometric structure and approximate
fibrations, Indiana Univ. Math. J. 40 (1991),
no. 4, 1451–1469. MR 1142723
(92m:55016), http://dx.doi.org/10.1512/iumj.1991.40.40065
 [D5]
R.
J. Daverman, HyperHopfian groups and approximate fibrations,
Compositio Math. 86 (1993), no. 2, 159–176. MR 1214455
(94b:55022)
 [DW]
R.
J. Daverman and J.
J. Walsh, Decompositions into codimensiontwo
manifolds, Trans. Amer. Math. Soc.
288 (1985), no. 1,
273–291. MR
773061 (87h:57019), http://dx.doi.org/10.1090/S00029947198507730614
 [G]
Charles
H. Giffen, The generalized Smith conjecture, Amer. J. Math.
88 (1966), 187–198. MR 0198462
(33 #6620)
 [Im]
Young
Ho Im, Products of surfaces that induce approximate
fibrations, Houston J. Math. 21 (1995), no. 2,
339–348. MR 1342414
(96c:57038)
 [KS]
R.
C. Kirby and L.
C. Siebenmann, Normal bundles for codimension 2 locally flat
imbeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974)
Springer, Berlin, 1975, pp. 310–324. Lecture Notes in Math.,
Vol. 438. MR
0400237 (53 #4072)
 [RS]
C.
P. Rourke and B.
J. Sanderson, Introduction to piecewiselinear topology,
SpringerVerlag, New YorkHeidelberg, 1972. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 69. MR 0350744
(50 #3236)
 [Z]
E.
C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 0195085
(33 #3290), http://dx.doi.org/10.1090/S00029947196501950858
 [Ch1]
 N. Chinen, Manifolds with nonzero Euler characteristic and codimension fibrators, Topology Appl. 86 (1998), 151167. CMP 98:12
 [Ch2]
 , Finite groups and approximate fibrations, preprint.
 [Co]
 M. M. Cohen, A Course in SimpleHomotopy Theory, SpringerVerlag, New York, 1973. MR 50:14762
 [CD1]
 D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275288. MR 56:1296
 [CD2]
 , Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 4156. MR 57:7597
 [CD3]
 , Nondegenerate sphere mappings between spheres, Topology Proceedings 4 (1979), 6782. MR 81m:57008
 [D1]
 R. J. Daverman, Decompositions into codimension manifolds: The nonorientable case, Topology Appl. 24 (1986), 7181. MR 88a:57028
 [D2]
 , Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), 173184. MR 91d:57013
 [D3]
 , Manifolds with finite first homology as codimension fibrators, Proc. Amer. Math. Soc. 113 (1991), 471477. MR 92a:55015
 [D4]
 , Manifolds with geometric structure and approximate fibrations, Indiana Univ. Math. J. 40 (1991), 14511469. MR 92m:55016
 [D5]
 , Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993), 159176. MR 94b:55022
 [DW]
 R. J. Daverman and J. J. Walsh, Decompositions into codimension manifolds, Trans. Amer. Math. Soc. 288 (1985), 273291. MR 87h:57019
 [G]
 C. H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187198. MR 33:6620
 [Im]
 Y. H. Im, Products of surfaces that induce approximate fibrations, Houston J. Math. 21 (1995), 339348. MR 96c:57038
 [KS]
 R. C. Kirby and L. C. Siebenmann, Normal bundles for codimension locally flat embeddings, in Geometric Topology (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Mathematics, vol. 438, SpringerVerlag, Berlin, 1975, pp. 310324. MR 53:4072
 [RS]
 C. Rourke and B. J. Sanderson, Introduction to Piecewise Linear Topology, SpringerVerlag, Berlin, 1972. MR 50:3236
 [Z]
 E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471495. MR 33:3290
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
55R65,
57N15,
57N10,
57S37,
57N55
Retrieve articles in all journals
with MSC (1991):
55R65,
57N15,
57N10,
57S37,
57N55
Additional Information
R. J. Daverman
Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 379961300
Email:
daverman@novell.math.utk.edu
DOI:
http://dx.doi.org/10.1090/S0002993999051928
PII:
S 00029939(99)051928
Keywords:
Approximate fibration,
fibrator,
homotopy equivalence,
degree,
local winding function,
Lens space,
hopfian manifold,
locally flat
Received by editor(s):
May 24, 1997
Additional Notes:
This research was supported in part by NSF Grant DMS9401086.
Communicated by:
Ralph Cohen
Article copyright:
© Copyright 1999
American Mathematical Society
