Codimension 2 nonfibrators with finite fundamental groups

Author:
R. J. Daverman

Journal:
Proc. Amer. Math. Soc. **127** (1999), 881-888

MSC (1991):
Primary 55R65, 57N15, 57N10; Secondary 57S37, 57N55

MathSciNet review:
1646311

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fibrators are -manifolds which automatically induce approximate fibrations, in the following sense: given any proper mapping from an -manifold onto a finite-dimensional metric space such that, up to shape, each point-preimage is a copy of the fibrator, is necessarily an approximate fibration. This paper sets forth new examples, for the case , of nonfibrators whose fundamental groups are finite.

**[Ch1]**N. Chinen,*Manifolds with nonzero Euler characteristic and codimension fibrators,*Topology Appl.**86**(1998), 151-167. CMP**98:12****[Ch2]**,*Finite groups and approximate fibrations,*preprint.**[Co]**Marshall M. Cohen,*A course in simple-homotopy theory*, Springer-Verlag, New York-Berlin, 1973. Graduate Texts in Mathematics, Vol. 10. MR**0362320****[CD1]**D. S. Coram and P. F. Duvall Jr.,*Approximate fibrations*, Rocky Mountain J. Math.**7**(1977), no. 2, 275–288. MR**0442921****[CD2]**Donald Coram and Paul Duvall,*Approximate fibrations and a movability condition for maps*, Pacific J. Math.**72**(1977), no. 1, 41–56. MR**0467745****[CD3]**D. Coram and P. Duvall,*Nondegenerate 𝑘-sphere mappings between spheres*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 67–82 (1980). MR**583689****[D1]**R. J. Daverman,*Decompositions into codimension two submanifolds: the nonorientable case*, Topology Appl.**24**(1986), no. 1-3, 71–81. Special volume in honor of R. H. Bing (1914–1986). MR**872479**, 10.1016/0166-8641(86)90050-7**[D2]**R. J. Daverman,*Submanifold decompositions that induce approximate fibrations*, Topology Appl.**33**(1989), no. 2, 173–184. MR**1020279**, 10.1016/S0166-8641(89)80006-9**[D3]**Robert J. Daverman,*Manifolds with finite first homology as codimension 2 fibrators*, Proc. Amer. Math. Soc.**113**(1991), no. 2, 471–477. MR**1086581**, 10.1090/S0002-9939-1991-1086581-0**[D4]**Robert J. Daverman,*3-manifolds with geometric structure and approximate fibrations*, Indiana Univ. Math. J.**40**(1991), no. 4, 1451–1469. MR**1142723**, 10.1512/iumj.1991.40.40065**[D5]**R. J. Daverman,*Hyper-Hopfian groups and approximate fibrations*, Compositio Math.**86**(1993), no. 2, 159–176. MR**1214455****[DW]**R. J. Daverman and J. J. Walsh,*Decompositions into codimension-two manifolds*, Trans. Amer. Math. Soc.**288**(1985), no. 1, 273–291. MR**773061**, 10.1090/S0002-9947-1985-0773061-4**[G]**Charles H. Giffen,*The generalized Smith conjecture*, Amer. J. Math.**88**(1966), 187–198. MR**0198462****[Im]**Young Ho Im,*Products of surfaces that induce approximate fibrations*, Houston J. Math.**21**(1995), no. 2, 339–348. MR**1342414****[KS]**R. C. Kirby and L. C. Siebenmann,*Normal bundles for codimension 2 locally flat imbeddings*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 310–324. Lecture Notes in Math., Vol. 438. MR**0400237****[RS]**C. P. Rourke and B. J. Sanderson,*Introduction to piecewise-linear topology*, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR**0350744****[Z]**E. C. Zeeman,*Twisting spun knots*, Trans. Amer. Math. Soc.**115**(1965), 471–495. MR**0195085**, 10.1090/S0002-9947-1965-0195085-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
55R65,
57N15,
57N10,
57S37,
57N55

Retrieve articles in all journals with MSC (1991): 55R65, 57N15, 57N10, 57S37, 57N55

Additional Information

**R. J. Daverman**

Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300

Email:
daverman@novell.math.utk.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-05192-8

Keywords:
Approximate fibration,
fibrator,
homotopy equivalence,
degree,
local winding function,
Lens space,
hopfian manifold,
locally flat

Received by editor(s):
May 24, 1997

Additional Notes:
This research was supported in part by NSF Grant DMS-9401086.

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 1999
American Mathematical Society