Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the number of solutions of an algebraic equation on the curve $y = e^{x} +\sin x,\, x>0$,
and a consequence for o-minimal structures

Authors: Janusz Gwozdziewicz, Krzysztof Kurdyka and Adam Parusinski
Journal: Proc. Amer. Math. Soc. 127 (1999), 1057-1064
MSC (1991): Primary 32B20, 32C05, 14P15; Secondary 26E05, 03C99
MathSciNet review: 1476134
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every polynomial $P(x,y)$ of degree $d$ has at most $2(d+2)^{12}$ zeros on the curve $y=e^{x}+\sin (x),\quad x>0 $. As a consequence we deduce that the existence of a uniform bound for the number of zeros of polynomials of a fixed degree on an analytic curve does not imply that this curve belongs to an o-minimal structure.

References [Enhancements On Off] (What's this?)

  • [BR] B. Benedetti, J. J. Risler, Real algebraic and semi-algebraic sets, Hermann, Paris, 1990.
  • [vD] L. van den Dries, O-minimal structures, in Logic: from foundation to Applications, eds; Hodges et al., Oxford University Press. CMP 97:06
  • [DMM] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205. MR 95k:12015
  • [DM] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84, No 2 (1996), 497-540. MR 97i:32008
  • [K1] A. Khovansky, On the class of systems of transcendental equations, Soviet Mathematics Doklady 22 (1980), 762-765.
  • [K2] A. Khovansky, Fewnomials, vol. 88, Translations of Math. Monographs AMS, 1991.
  • [KPS] J. Knight, A. Pillay, C. Steinhorn, Definable sets in ordered structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. MR 88b:03050b
  • [PS] A. Pillay, C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. MR 88b:03050a
  • [W] A. Wilkie, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32B20, 32C05, 14P15, 26E05, 03C99

Retrieve articles in all journals with MSC (1991): 32B20, 32C05, 14P15, 26E05, 03C99

Additional Information

Janusz Gwozdziewicz
Affiliation: Department of Mathematics, Technical University, Al. 1000LPP7, 25–314 Kielce, Poland

Krzysztof Kurdyka
Affiliation: Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique 73 376 Le Bourget–du–Lac Cedex, France and Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4 30–059 Kraków, Poland

Adam Parusinski
Affiliation: Département de Mathématiques, Université d’Angers, 2, bd Lavoisier, 49045 Angers cedex 01, France

Keywords: Fewnomial, Khovansky theory, o-minimal structure
Received by editor(s): July 15, 1997
Communicated by: Steven R. Bell
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society