Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity

Authors:
William Cherry and Chung-Chun Yang

Journal:
Proc. Amer. Math. Soc. **127** (1999), 967-971

MSC (1991):
Primary 11S80, 30D35

DOI:
https://doi.org/10.1090/S0002-9939-99-04789-9

MathSciNet review:
1487362

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A set is called a unique range set for a certain class of functions if each inverse image of that set uniquely determines a function from the given class. We show that a finite set is a unique range set, counting multiplicity, for non-Archimedean entire functions if and only if there is no non-trivial affine transformation preserving the set. Our proof uses a theorem of Berkovich to extend, to non-Archimedean entire functions, an argument used by Boutabaa, Escassut, and Haddad to prove this result for polynomials

**[A-S]**W. W. Adams and E. G. Straus,*Non-Archimedian analytic functions taking the same values at the same points*, Illinois J. Math.**15**(1971), 418-424. MR**43:3504****[Ber]**V. Berkovich,*Spectral Theory and Analytic Geometry over Non-Archimedean Fields*, Mathematical Surveys and Monographs**33**. Amer. Math. Soc. 1990. MR**91k:32038****[B-E-H]**A. Boutabaa, A. Escassut, and L. Haddad,*On Uniqueness of -Adic Entire Functions*, Indag. Math. (N.S.)**8**(1997), 145-155.**[Ch]**W. Cherry,*Non-Archimedean analytic curves in Abelian varieties*, Math. Ann.**300**(1994), 393-404. MR**96i:14021****[F-R]**G. Frank and M. Reinders,*A unique range set for meromorphic functions with 11 elements*, preprint.**[Gr]**F. Gross,*Factorization of meromorphic functions and some open problems*, in*Complex Analysis*(Proc. Conf., Univ. Kentucky, Lexington, KY, 1976) Lecture Notes in Math.**599**, Springer-Verlag, 1977, 51-67. MR**56:8823****[G-Y]**F. Gross and C.-C. Yang,*On preimage and range sets of meromorphic functions*, Proc. Japan Acad. Ser. A Math. Sci.**58**(1982), 17-20. MR**83d:30027****[H-Y]**P.-C. Hu and C.-C. Yang,*Value distribution theory of -adic meromorphic functions*, preprint.**[L-Y]**P. Li and C.-C. Yang,*On the Unique Range Set of Meromorphic Functions*, Proc. Amer. Math. Soc.**124**(1996), 177-185. MR**96d:30033****[Nev]**R. Nevanlinna,*Analytic Functions*, Springer-Verlag, 1970. MR**43:5003****[O-P-Z]**I. V. Ostrovskii, F. B. Pakovitch, and M. G. Zaidenberg,*A Remark on Complex Polynomials of Least Deviation*, Internat. Math. Res. Notices**1996**(1996), 699-703. MR**97i:30007****[Y-Y]**H. X. Yi and C.-C. Yang*On Uniqueness Theorems for Meromorphic Functions*(in Chinese), Science Press, China, 1995.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11S80,
30D35

Retrieve articles in all journals with MSC (1991): 11S80, 30D35

Additional Information

**William Cherry**

Affiliation:
School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Address at time of publication:
Department of Mathematics, University of North Texas, Denton, Texas 76203

**Chung-Chun Yang**

Affiliation:
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Email:
mayang@uxmail.ust.hk

DOI:
https://doi.org/10.1090/S0002-9939-99-04789-9

Received by editor(s):
July 18, 1997

Additional Notes:
Financial support for the first author was provided by National Science Foundation grants DMS-9505041 and DMS-9304580

The second author’s research was partially supported by a UGC grant of Hong Kong.

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society