approximations of inertial manifolds

via finite differences

Author:
Kazuo Kobayasi

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1143-1150

MSC (1991):
Primary 47H20; Secondary 35K55

MathSciNet review:
1610800

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an inertial manifold for the evolution equation as a limit of the inertial manifolds for the difference approximations of the Trotter-Kato type and show that this limit is taken in a topology.

**1.**Shui-Nee Chow and Kening Lu,*Invariant manifolds for flows in Banach spaces*, J. Differential Equations**74**(1988), no. 2, 285–317. MR**952900**, 10.1016/0022-0396(88)90007-1**2.**Shui-Nee Chow, Kening Lu, and George R. Sell,*Smoothness of inertial manifolds*, J. Math. Anal. Appl.**169**(1992), no. 1, 283–312. MR**1180685**, 10.1016/0022-247X(92)90115-T**3.**Françoise Demengel and Jean-Michel Ghidaglia,*Inertial manifolds for partial differential evolution equations under time-discretization: existence, convergence, and applications*, J. Math. Anal. Appl.**155**(1991), no. 1, 177–225 (English, with French summary). MR**1089333**, 10.1016/0022-247X(91)90034-W**4.**C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi,*Dissipativity of numerical schemes*, Nonlinearity**4**(1991), no. 3, 591–613. MR**1124326****5.**C. Foias, G. Sell and R. Temam,*Inertial manifolds for nonlinear evolutional equations*, J. Differential Equations**73**(1988), 309-353.**6.**Ciprian Foias and Edriss S. Titi,*Determining nodes, finite difference schemes and inertial manifolds*, Nonlinearity**4**(1991), no. 1, 135–153. MR**1092888****7.**Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society, Providence, R. I., 1974. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, Vol. XXXI. MR**0423094**

Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR**0089373****8.**M. W. Hirsch, C. C. Pugh, and M. Shub,*Invariant manifolds*, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR**0501173****9.**Don A. Jones and Andrew M. Stuart,*Attractive invariant manifolds under approximation. Inertial manifolds*, J. Differential Equations**123**(1995), no. 2, 588–637. MR**1362887**, 10.1006/jdeq.1995.1174**10.**Don A. Jones and Edriss S. Titi,*𝐶¹ approximations of inertial manifolds for dissipative nonlinear equations*, J. Differential Equations**127**(1996), no. 1, 54–86. MR**1387257**, 10.1006/jdeq.1996.0061**11.**Kazuo Kobayasi,*Convergence and approximation of inertial manifolds for evolution equations*, Differential Integral Equations**8**(1995), no. 5, 1117–1134. MR**1325548****12.**Kazuo Kobayasi,*Inertial manifolds for discrete approximations of evolution equations: convergence and applications*, Adv. Math. Sci. Appl.**3**(1993/94), no. Special Issue, 161–189. MR**1287928****13.**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****14.**Victor A. Pliss and George R. Sell,*Perturbations of attractors of differential equations*, J. Differential Equations**92**(1991), no. 1, 100–124. MR**1113591**, 10.1016/0022-0396(91)90066-I

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47H20,
35K55

Retrieve articles in all journals with MSC (1991): 47H20, 35K55

Additional Information

**Kazuo Kobayasi**

Affiliation:
Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-Ku, Tokyo 169-8050, Japan

Email:
kzokoba@mn.waseda.ac.jp

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04927-8

Keywords:
Inertial manifold,
long-time behavior,
finite dynamical system,
evolution equation

Received by editor(s):
July 29, 1997

Additional Notes:
This research was partially supported by Waseda University Grant for special Research Projects 97A-81.

Communicated by:
David R. Larson

Article copyright:
© Copyright 1999
American Mathematical Society