On the exactness of an S-shaped

bifurcation curve

Authors:
Philip Korman and Yi Li

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1011-1020

MSC (1991):
Primary 34B15

DOI:
https://doi.org/10.1090/S0002-9939-99-04928-X

MathSciNet review:
1610804

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a class of two-point boundary value problems we prove exactness of an S-shaped bifurcation curve. Our result applies to a problem from combustion theory, which involves nonlinearities like for .

**1.**A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems,*J. Math. Anal. Applic.***73**, 411-422 (1980). MR**81j:35092****2.**J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory,*Springer-Verlag*(1989). MR**91d:35165****3.**K.J. Brown, M.M.A. Ibrahim and R. Shivaji, S-shaped bifurcation curves,*Nonlinear Anal. TMA***5**(5), 475-486 (1981). MR**82h:35007****4.**A. Castro and R. Shivaji, Uniqueness of positive solutions for elliptic boundary value problems,*Proc. Royal Soc. Edinburgh***98A**, 267-269 (1984). MR**86d:35051****5.**M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,*Arch. Rational Mech. Anal.***52**, 161-180 (1973). MR**49:5962****6.**E.N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large,*J. Differential Equations***37**, 404-437 (1980). MR**82b:35018****7.**Y. Du and Y. Lou, S-Shaped global bifurcation curve of positive solutions to a prey-predator model,*MSRI Preprint*No. 1996-044 (1996).**8.**P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary-value problems with nonlinearities generalizing cubic,*Proc. Royal Soc. Edinburgh***126A**, 599-616 (1996). MR**97c:34038****9.**N. Mizoguchi and T. Suzuki, Equations of gas combustion: s-shaped bifurcation and mushrooms,*J. Differential Equations***134**, 183-215 (1997). MR**97m:35090****10.**R. Shivaji, Remarks on an S-shaped bifurcation curve,*J. Math. Anal. Applic.***111**, 374-387 (1985). MR**87c:35015****11.**S.-H. Wang, On S-shaped bifurcation curves,*Nonlinear Analysis TMA***22**, 1475-1485 (1994). MR**96d:34021**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34B15

Retrieve articles in all journals with MSC (1991): 34B15

Additional Information

**Philip Korman**

Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025

Email:
kormanp@math.uc.edu

**Yi Li**

Affiliation:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

Email:
yli@math.uiowa.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-04928-X

Keywords:
S-shaped bifurcation curve,
Crandall-Rabinowitz theorem

Received by editor(s):
July 8, 1997

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1999
American Mathematical Society