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ON THE REDUCTION NUMBER
OF SOME GRADED ALGEBRAS

HENRIK BRESINSKY AND LÊ TUÂN HOA

(Communicated by Wolmer V. Vasconcelos)

Abstract. The main result of the paper confirms, for generic coordinates, a
conjecture which states that r(R/I) ≤ r(R/in(I)). Here I is a homogeneous
polynomial ideal in R and r(R/I) and r(R/in(I)) are the reduction numbers.

1. Introduction

Let R = k[x1, ..., xn] be a polynomial ring, k an infinite field and I 6= 0 a
homogeneous ideal in R. We set m = (x1, ..., xn)R/I.

Definition 1. A homogeneous ideal J ⊆ m is called a reduction of m if mr+1 = Jmr

for some integer r ≥ 0. J is called a minimal reduction, if J does not properly
contain a reduction of m (see [6]). The reduction number of m with respect to a
minimal reduction J of m, denoted by rJ (m) or rJ(R/I), is the smallest r ≥ 0
such that mr+1 = Jmr. The (absolute) reduction number of m, denoted by r(m) or
r(R/I), is the infimum of rJ (m) over all possible minimal reductions J of m. (This
notion was introduced by J. Sally and has proven to be an important invariant (see,
e.g. [7], [8]).)

Let in(I) be the initial ideal of I with respect to some admissible term order
on the terms of R (see [4], Chapter 15, or [3]). in(I) is a monomial ideal and
frequently contains important information about I (see [4], Section 15.10, and [8]).
A natural question therefore is to ask what relationship exists between r(R/I) and
r(R/in(I)). In [8] it was conjectured that

r(R/I) ≤ r(R/in(I)).

The purpose of this note is to prove that the conjecture is true for generic coordi-
nates (Theorem 12). This supports the general conjecture to the extent that in all
examples done by us r(R/gin(I)) is minimal among r(R/in(I)), where gin(I) is
the initial ideal of I in generic coordinates (for a definition of gin(I) see [4], Section
15.9). We obtain our result as a consequence of our study of the reduction number
of Borel-fixed ideals in Section 3. Section 2 gives some preliminary results on the
reduction number of a special class of monomials ideals. In conclusion in Section
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4, we make a remark on the relationship between the reduction number and the
maximal degree in a minimal homogeneous generating set of I.

2. Preliminary results

We assume throughout that R, I and m are defined as in Section 1 and dim(R/I)
= d. By ȳ we denote the image of y ∈ R in R/I.

Definition 2. If M is any Z-graded R-module, we define

a(M) =

{
max{p; Mp 6= 0} if M 6= 0,

−∞ if M = 0.

By [6], a minimal reduction of m can always be generated by a system of param-
eters. The following lemma is well known. We provide a proof for the convenience
of the reader.

Lemma 3. The ideal J = (ȳ1, ..., ȳd) ⊆ R/I is a minimal reduction of m iff
ȳ1, ..., ȳd is a system of parameters (s.o.p.) of R/I with ȳi linear forms, 1 ≤ i ≤ d.
In this case

rJ (m) = a(R/(I, y1, ..., yd)).

Proof. Let r = rJ (m) and a = a(R/(I, y1, ..., yd)). We have mp+1 = (ȳ1, ..., ȳd)mp

for all p ≥ r. Suppose some element, say ȳd, has degree greater than 1. Then
[R/I]p+1 ⊆ ȳ1[R/I]p+· · ·+ ȳd−1[R/I]p, where [R/I]i are the homogeneous elements
of degree i in R/I. From this it follows that mp+1 ⊆ (ȳ1, ..., ȳd−1), a contradiction
since dim(R/I) = d. Also [R/I]p+1 ⊆ (ȳ1, ..., ȳd), hence Rp+1 ⊆ (I, y1, ..., yd),
and thus a ≤ r. Conversely if ȳ ∈ ma+1, then its image ¯̄y ∈ R/(I, y1, ..., yd) is 0,
since otherwise it would have degree at least a+1, which is impossible. This means
ȳ ∈ (ȳ1, ..., ȳd), i.e. ȳ = ȳi1 z̄1+· · ·+ȳiq z̄q, where z̄j ∈ R/I and 1 ≤ i1 < · · · < iq ≤ d.
W.l.o.g. we may assume q to be minimal. Then, comparing degrees on both sides,
we have deg(z̄j) ≥ deg(ȳ)− deg(ȳij ) = a, i.e. z̄j ∈ ma. Thus ma+1 ⊆ (ȳ1, ..., ȳd)ma

which implies ma+1 = (ȳ1, ..., ȳd)ma; hence a ≥ r.

Proposition 4. r(R/I) ≥ min{deg(F ); F ∈ I, F homogeneous} − 1.

Proof. Let J = (ȳ1, ..., ȳd) be a minimal reduction of m. Since I 6= 0, I 6⊆ (y1, ..., yd).
Set I ′ := (I, y1, ..., yd)/(y1, ..., yd) ⊆ R′ :∼= R/(y1, ..., yd). Then

rJ (R/I) = a(R/(I, y1, ..., yd)) = a(R′/I ′)

≥ min{deg(F ′); F ′ ∈ I ′, F ′ homogeneous} − 1

≥ min{deg(F ); F ∈ I, F homogeneous} − 1.

We note that this lower bound can actually be attained (see Example 7). The
following result will be useful for the study of reduction numbers of a certain class
of monomial ideals.

Lemma 5. Assume that I is a monomial ideal of R such that x̄n−d+1, ..., x̄n is a
s.o.p. of R/I. Then any minimal reduction J of m is generated by d linear forms
ȳ1, ..., ȳd with

yi = xn−d+i + ai,1x1 + · · ·+ ai,n−dxn−d, 1 ≤ i ≤ d,

where ai,j ∈ k, 1 ≤ j ≤ n− d.
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Proof. Let p be a highest dimensional associated prime ideal of I. Then xn−d+1, ...,
xn are not in p. Since any associated prime ideal of a monomial ideal is generated
by a subset of variables and dim(R/p) = d, it follows that p = (x1, ..., xn−d). Let
S = R/I and for an integer i, 1 ≤ i ≤ d, let ni := (x1, ..., xn−d, xn−d+i+1, ..., xn)S.
By Lemma 3 we may assume that y1, ..., yd are linear forms. If there is no i, 1 ≤ i ≤
d, such that a nonzero summand of yi is a multiple of xn−d+1, then (ȳ1, ..., ȳd) ⊆ n1;
thus dim(S/(ȳ1, ..., ȳd)) ≥ 1, a contradiction. Assume w.l.o.g.

y1 = xn−d+1 +
n∑

j=1,j 6=n−d+1

b1jxj .

Subtracting multiples of y1 if need be, we eliminate xn−d+1 from yi, i 6= 1. Suppose
there is no i, 2 ≤ i ≤ d, such that a nonzero summand of yi is a multiple of xn−d+2.
Since then(ȳ2, ..., ȳd) ⊆ n2, dim(S/(ȳ2, ..., ȳd)) ≥ dim(S/n2) = 2, a contradiction.
W.l.o.g. assume

y2 = xn−d+2 +
n−d∑
j=1

b2jxj +
n∑

j=n−d+3

b2jxj .

Subtracting multiples of y2 if need be, we eliminate xn−d+2 from yi, i 6= 2. Con-
tinuing, we obtain a s.o.p. yi, 1 ≤ i ≤ d, as claimed.

Corollary 6. Assume that I is a monomial ideal as in Lemma 5. Then for any
minimal reduction J of m we have

rJ (m) ≤ r(xn−d+1,...,xn)(m).

Proof. By Lemma 5 we may assume that J = (ȳ1, ..., ȳd), where yi = xn−d+i +
ai,1x1 + · · · + ai,n−dxn−d, 1 ≤ i ≤ d. Consider k[x1, ..., xn−d] as a subring of
R and set I1 = I ∩ k[x1, ..., xn−d], I2 = (I, y1, ..., yd) ∩ k[x1, ..., xn−d]. Then
R/(I, xn−d+1, ..., xn) ∼= k[x1, ..., xn−d]/I1, R/(I, y1, ..., yd) ∼= k[x1, ..., xn−d]/I2 and
I1 ⊆ I2. Therefore the corollary now follows by Lemma 3.

The following examples show that the difference between r(xn−d+1,...,xn)(m) and
r(m) in the setting of Lemma 5 can be very large. They also show that the reduction
number rJ (m) with respect to a minimal reduction J of m depends very much on
the choice of J . Together with Corollary 6 this explains why it is still difficult to
calculate r(R/I), even for monomial ideals satisfying Lemma 5.

Example 7. Let a1 > a2 > · · · > an ≥ 2 be positive integers.
1. The ideal

I = (xa1
1 , ..., x

an−1
n−1 , xixj , 1 ≤ i < j ≤ n)

is a one-dimensional ideal and (xn)R/I is a parameter ideal of R/I. By Lemma 3
we have

rJ (m) =


a1 − 1 if J = (xn)R/I,

ai+1 − 1 if J = (xn − x1 − · · · − xi)R/I, 1 ≤ i < n− 1,

1 if J = (xn − x1 − · · · − xn−1)R/I.

Hence r(m) = 1.
2. The ideal

I = (xa1
1 , x1x

a2
2 , ..., x1x

an
n )
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is a one-codimensional ideal and (x2, ..., xn)R/I is a parameter ideal of R/I. Again
by Lemma 3 we get

rJ (m) =

{
a1 − 1 if J = (x2, ..., xn),
ai if J = (x2, ..., xi−1, xi − x1, xi+1, ..., xn), 2 ≤ i ≤ n.

Since an + 1 is the least degree in the above generating set, by Proposition 4,
r(m) = an.

3. Borel-fixed ideals

In this section we study the reduction number of so called Borel-fixed ideals.

Definition 8. The action of a matrix g = (gij) ∈ GL(n, k) on k[x1, ..., xn] is
defined by g(xi) =

∑n
j=1 gjixj . Let B = {g; g ∈ GL(n, k), gij = 0 for j < i} be

the Borel subgroup of GL(n, k). An ideal I of R is called Borel fixed if g(I) = I
for all g ∈ B.

Definition 9. A monomial ideal I is said to be stable if m ∈ I and xi|m imply
mxj/xi ∈ I for all j ≤ i.

It follows immediately that a stable ideal I is Borel-fixed. If char(k) = 0, then
by [3], Proposition 2.7, Borel-fixed ideals are stable ideals. Borel-fixed ideals are
important, because for any term order such that x1 > x2 > · · · > xn, in generic
coordinates the initial ideal, gin(I), is Borel-fixed.

Lemma 10. Let I be a d-dimensional Borel-fixed monomial ideal. Then:
(i) (xn−d+1, ..., xn)R/I is a parameter ideal of R/I and xα

n−d is a part of the
minimal monomial generating set of I for some α > 0.

(ii) If I is stable, then r(xn−d+1,...,xn)(m) = α− 1.

Proof. (i) See [4], Corollary 15.25.
(ii) Let J = (xn−d+1, ..., xn). By (i) xα

n−d is part of a minimal monomial gener-
ating set of I for some α > 0. Hence by Lemma 3, rJ (m) ≥ α − 1. Assume r :=
rJ(m) ≥ α. Again by Lemma 3 and (i), there is a monomial m = xa1

1 ...x
an−d

n−d 6∈ I
such that deg(m) = r. Since I is stable, this implies that xr

n−d 6∈ I, a contradiction.
Thus r = α− 1.

Without the assumption that I is a stable ideal, Lemma 10 (ii) is false. Let
char(k) = p > 0. Then I = (xp

1, x
p
2, x1x

p
3) ⊂ k[x1, x2, x3] is Borel-fixed, but

r(x3)(R/I) = 2p− 2.
In contrast to Example 7, the following result shows that the reduction numbers

of Borel-fixed ideals behave well.

Theorem 11. Assume that I is a Borel-fixed monomial ideal. Then for an arbi-
trary minimal reduction J of R/I we have r(R/I) = rJ (R/I). Thus the reduction
number r(R/I) does not depend on the choice of a minimal reduction.

Moreover, if the ideal is stable, then r(R/I) = α− 1, α as in Lemma 10.

Proof. By Lemma 10 it suffices to show that rJ(m) = r(xn−d+1,...,xn)(m). By Lemma
5 we may assume that J = (ȳ1, ..., ȳd), where

yi = xn−d+i + ai,1x1 + · · ·+ ai,n−dxn−d, 1 ≤ i ≤ d.

Let I1 be the ideal in k[x1, ..., xn−d], which is obtained from I by replacing the
variable xn−d+i in each monomial m ∈ I by −(ai,1x1 + · · ·+ai,n−dxn−d), 1 ≤ i ≤ d.
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Then we have R/(I, y1, ..., yd) ∼= k[x1, ..., xn−d]/I1. Also R/(I, xn−d+1, ..., xn) ∼=
k[x1, ..., xn−d]/I2, where I2 = I ∩ k[x1, ..., xn−d]. Clearly I2 ⊆ I1. Now let m =
xb1

1 ...xbn
n ∈ I. Set

g =



1 0 · · · 0 −a1,1 · · · −ad,1

0 1 · · · 0 −a1,2 · · · −ad,2

· · · · · · · · · · ·
0 0 · · · 1 −a1,n−d · · · −ad,n−d

0 0 · · · 0 1 · · · 0
· · · · · · · · · · ·
0 0 · · · 0 0 · · · 1


.

Since I is Borel-fixed,

g(m) = xb1
1 ...x

bn−d

n−d

d∏
i=1

[xn−d+i − (ai,1x1 + · · ·+ ai,n−dxn−d)]bn−d+i ∈ I.

Note that if f + g belongs to a monomial ideal I, then both polynomials f and g
belong to I too. Hence the above relation implies that

xb1
1 ...x

bn−d

n−d

d∏
i=1

[−(ai,1x1 + · · ·+ ai,n−dxn−d)]bn−d+i ∈ I.

This means I1 ⊆ I2, which yields I1 = I2. Thus by Lemma 3 we get rJ (m) =
r(xn−d+1,...,xn)(m).

Now we can state and prove the main result of this paper, which gives partially
a positive answer to the conjecture of Vasconcelos mentioned in the introduction.

Theorem 12. Assume that in(I) is a Borel-fixed ideal. Then r(R/I)≤r(R/in(I)).
In particular in generic coordinates the above inequality holds for any admissible

term order.

Proof. By Lemma 10, x̄n−d+1, ..., x̄n is a s.o.p. of R/in(I)). Since

(in(I), xn−d+1, ..., xn) ⊆ in(I, xn−d+1, ..., xn),

x̄n−d+1, ..., x̄n is also a s.o.p. of R/I. Hence by Lemma 3 the images of the ideal
J = (xn−d+1, ..., xn) in R/I and R/in(I) are a minimal reduction of their maximal
homogeneous ideals respectively. By abuse of notation we also denote these images
by J . We have

r(R/I) ≤ rJ (m) = a(R/(I, xn−d+1, ..., xn)) (by Lemma 3)

= a(R/in(I, xn−d+1, ..., xn)) (by Macaulay’s theorem, see [4], Theorem 15.3)

≤ a(R/(in(I), xn−d+1, ..., xn))

= rJ (R/in(I)) (by Lemma 3)

= r(R/in(I)) (by Theorem 11).

By changing the indexes of variables, we may assume that x1 > x2 > · · · > xn.
Then we know by Galligo’s theorem that there is a Zariski open subset U ⊆ GL(n, k)
such that for each g ∈ U , in(g(I)) is Borel-fixed (see [4], 15.9.2). Since the new
coordinates, obtained by a transformation g ∈ U , are so called generic coordinates,
the last statement follows.
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Also in support of the conjecture by Vasconcelos is the following

Proposition 13. Assume that R/I is a Cohen-Macaulay ring. Then

r(R/I) ≤ r(R/in(I)).

Proof. Since R/I is assumed to be Cohen-Macaulay, it follows from [7], Proposition
3.2, that r(R/I) = a(Hd

(x1,...,xn)(R/I)) and r(R/in(I)) ≥ a(Hd
(x1,...,xn)(R/in(I))),

where d = dim(R/I) and Hd
(x1,...,xn)(R/I), Hd

(x1,...,xn)(R/in(I)) are local cohomol-
ogy modules. By [5], Theorem 4, Extd

R(R/I, R) is a subfactor of Extd
R(R/in(I), R).

Hence by local duality we have

r(R/I) = a(Hd
(x1,...,xn)(R/I)) ≤ a(Hd

(x1,...,xn)(R/in(I))) ≤ r(R/in(I)).

4. On the relation between the reduction number
and the maximal degree

Let D(I) be the maximum degree of the elements in a minimal generating set for
I. If R/I is Buchsbaum ring, then r(R/I) = reg(R/I) ≥ D(I)− 1 by [7], Corollary
3.3 and Lemma 3.4, where

reg(R/I) = max{a(H i
m(R/I)) + i; i ≤ d}

is the Castelnuovo-Mumford regularity of R/I (see also [8], Proposition 4.14). One
may ask if we always have D(I) ≤ r(R/I)+1? (In this connection see also Remark
4.15 and the diagram on pp. 188 in [8].) However this is not the case, as is
exemplified in [8], Example 4.2(b), and our Example 7. By Theorem 11 we even
have r(R/I) ≤ D(I) + 1 for stable monomial ideals (with the possibility of a strict
inequality). In the following examples we show that the inequality D(I) ≤ r(R/I)+
1 does not hold for prime ideals and that in even seemingly simple situations, the
reduction number depends on the choice of a minimal reduction.

Example 14. Let p ⊂ R = k[x0, ..., x3] be the prime ideal of the monomial curve
(t870 , t400 t471 , t20t

85
1 , t871 ) in P3

k. By [1], Example 2, p is generated by six binomials
x22

1 −x10
0 x5

2x
7
3, x

4
0x

6
2−x9

1x3, x
6
0x

8
3−x13

1 x2, x
2
0x

9
3−x4

1x
7
2, x

2
0x

13
2 −x5

1x
10
3 , x20

2 −x1x
19
3 . By

Lemma 3 we have r(x0,x3)(R/p) = 22. Using the computer system “Macaulay” by
D. Bayer and M. Stillman, we get from Lemma 3 that r(x0−x1−x2,x3−x1−x2)(R/p) =
17; thus r(R/p) ≤ 17, while D(p) = 22.

At present it is not clear to us how to calculate in general the reduction number
of the coordinate ring of a monomial curve in P3. We close with the computation
of the reduction number for a special class of monomial curves in P3.

Example 15. Let p be the defining prime ideal of the monomial curve

(tb+a
0 , tb0t

a
1 , ta0t

b
1, t

a+b
1 )

with g.c.d.(a, b) = 1 and b > a > 0. Then

p = (x0x3 − x1x2, x
b
1 − xb−a

0 xa
2 , xb−1

1 x3 − xb−a−1
0 xa+1

2 , ..., xa
1xb−a

3 − xb
2) ⊂ R

= k[x0, ..., x3].

We claim

rJ (R/p) = r(R/p) = b− 1 = reg(R/p).

We have by Lemma 3, r(x0,x3)(R/p) = b − 1. Let J = (ȳ1, ȳ2) be a minimal
reduction of m. Since x̄n

0 6∈ (x̄1, x̄2, x̄3) and x̄n
3 6∈ (x̄0, x̄1, x̄2) for all n > 0, one
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may assume that either y1 = x0 + a11x1 + a12x2, y2 = x3 + a21x1 + a22x2 or
y1 = x0 + b11x1 + b12x2 + b13x3, b13 6= 0, y2 = b21x1 + b22x2 such that (b11, b21) =
(0, 1) or (b12, b22) = (0, 1). Note that every generator in p except one has degree
b. From this it follows that either xb−1

1 or xb−1
2 is not in (p, y1, y2). Hence, by

Lemma 3, rJ (R/p) ≥ b− 1. Thus r(R/p) = b− 1. Moreover, by [2], Theorem 3.1,
reg(R/p) = b−1. Since rJ (R/p) ≤ reg(R/p) by [7], Proposition 3.2, rJ (R/p) = b−1.
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