The moduli space of -flat connections

and the fusion rules

Author:
Masato Hayashi

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1545-1555

MSC (1991):
Primary 58D29, 57M05; Secondary 17B81, 17B10

DOI:
https://doi.org/10.1090/S0002-9939-99-04674-2

Published electronically:
January 29, 1999

MathSciNet review:
1476136

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to determine the existence condition of the moduli space of -flat connections on -holed -sphere , the so-called pair of pants, and to study its relationship to the fusion rules. The existence condition can be expressed by a system of inequalities with the entries of highest weights with respect to the fundamental weights. This gives a necessary condition for the fusion coefficents to be nontrivial. We also find that the fusion coefficient of a triplet of extremal highest weights equals one. This can be considered a quantum counterpart of the PRV-conjecture.

**[B]**H. U. Boden,*Unitary representations of Brieskorn spheres*, Duke Math.**75(No.1)**(1994), 193-220. MR**95f:57033****[BL]**A. Beauville and Y. Laszlo,*Conformal blocks and generalized theta function*, Comm. Math. Phys.**164**(1994), 385-419. MR**95k:14011****[BZ]**A. D. Berenstein and A. Z. Zelevinsky, Cornell preprint-technical report**90-60**(1990).**[F]**G. Faltings,*A proof of the Verlinde formula*, J. Alg. Geom.**3**(1994), 347-374. MR**95j:14013****[Fu]**J. Fuchs,*Affine Lie algebras and quantum groups*, Cambridge, 1995. MR**96a:17018****[GN]**F. M. Goodman and T. Nakanishi,*Fusion algebras in integrable systems in two dimensions*, Phys. Lett.**B262**(1991), 259-264. MR**92i:81281****[K]**V. G. Kac,*Infinite dimensional Lie algebras*, Cambridge, 1990. MR**92k:17038****[KMSW]**A. N. Kirillov, P. Mathieu, D. Sénéchal and M. A. Walton,*Can fusion coefficients be calculated from the depth rule?*, Nuclear Phys.**B391**(1993), 651-674. MR**94b:81110****[KNR]**S. Kumar, M. S. Narasimhan and A. Ramanathan,*Infinite Grassmannians and moduli spaces of -bundles*, Math. Ann.**300**(1994), 41-75. MR**96e:14011****[Ku]**S. Kumar,*Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture*, Invent. Math.**93**(1988), 117-130. MR**89j:17009****[MS]**V. B. Mehta and C. S. Seshadri,*Moduli of vector bundles on curves with parabolic structure*, Math. Ann.**248**(1980), 205-239. MR**81i:14010****[PRV]**K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan,*Representations of complex semi-simple Lie groups and Lie algebras*, Ann.of Math.**85**(1967), 383-429. MR**37:1526****[S]**T. A. Springer,*Linear algebraic groups*, Birkhäuser, 1981. MR**84i:20002****[TK]**A. Tsuchiya and Y. Kanie,*Vertex operators in conformal field theory on and monodromy representations of braid group*, Adv. Stu. Pure Math.**85**(1988), 297-372. MR**89m:81166****[W]**E. Witten,*The Verlinde algebra and the cohomology of the Grassmannian*, IASSNS-HEP-93/41. CMP**96:03**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58D29,
57M05,
17B81,
17B10

Retrieve articles in all journals with MSC (1991): 58D29, 57M05, 17B81, 17B10

Additional Information

**Masato Hayashi**

Affiliation:
Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo

Email:
hayashim@ms318sun.ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-04674-2

Keywords:
Representations of the fundamental group of a surface,
Bruhat decomposition,
fusion rules,
PRV-conjecture

Received by editor(s):
May 13, 1996

Received by editor(s) in revised form:
September 3, 1997

Published electronically:
January 29, 1999

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1999
American Mathematical Society