The moduli space of -flat connections

and the fusion rules

Author:
Masato Hayashi

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1545-1555

MSC (1991):
Primary 58D29, 57M05; Secondary 17B81, 17B10

Published electronically:
January 29, 1999

MathSciNet review:
1476136

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to determine the existence condition of the moduli space of -flat connections on -holed -sphere , the so-called pair of pants, and to study its relationship to the fusion rules. The existence condition can be expressed by a system of inequalities with the entries of highest weights with respect to the fundamental weights. This gives a necessary condition for the fusion coefficents to be nontrivial. We also find that the fusion coefficient of a triplet of extremal highest weights equals one. This can be considered a quantum counterpart of the PRV-conjecture.

**[B]**Hans U. Boden,*Unitary representations of Brieskorn spheres*, Duke Math. J.**75**(1994), no. 1, 193–220. MR**1284819**, 10.1215/S0012-7094-94-07506-6**[BL]**Arnaud Beauville and Yves Laszlo,*Conformal blocks and generalized theta functions*, Comm. Math. Phys.**164**(1994), no. 2, 385–419. MR**1289330****[BZ]**A. D. Berenstein and A. Z. Zelevinsky, Cornell preprint-technical report**90-60**(1990).**[F]**Gerd Faltings,*A proof for the Verlinde formula*, J. Algebraic Geom.**3**(1994), no. 2, 347–374. MR**1257326****[Fu]**Jürgen Fuchs,*Affine Lie algebras and quantum groups*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1995. An introduction, with applications in conformal field theory; Corrected reprint of the 1992 original. MR**1337497****[GN]**Frederick M. Goodman and Tomoki Nakanishi,*Fusion algebras in integrable systems in two dimensions*, Phys. Lett. B**262**(1991), no. 2-3, 259–264. MR**1113627**, 10.1016/0370-2693(91)91563-B**[K]**Victor G. Kac,*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219****[KMSW]**A. N. Kirillov, P. Mathieu, D. Sénéchal, and M. A. Walton,*Can fusion coefficients be calculated from the depth rule?*, Nuclear Phys. B**391**(1993), no. 3, 651–674. MR**1208656**, 10.1016/0550-3213(93)90087-6**[KNR]**Shrawan Kumar, M. S. Narasimhan, and A. Ramanathan,*Infinite Grassmannians and moduli spaces of 𝐺-bundles*, Math. Ann.**300**(1994), no. 1, 41–75. MR**1289830**, 10.1007/BF01450475**[Ku]**Shrawan Kumar,*Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture*, Invent. Math.**93**(1988), no. 1, 117–130. MR**943925**, 10.1007/BF01393689**[MS]**V. B. Mehta and C. S. Seshadri,*Moduli of vector bundles on curves with parabolic structures*, Math. Ann.**248**(1980), no. 3, 205–239. MR**575939**, 10.1007/BF01420526**[PRV]**K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan,*Representations of complex semi-simple Lie groups and Lie algebras*, Ann. of Math. (2)**85**(1967), 383–429. MR**0225936****[S]**T. A. Springer,*Linear algebraic groups*, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR**632835****[TK]**Akihiro Tsuchiya and Yukihiro Kanie,*Vertex operators in conformal field theory on 𝑃¹ and monodromy representations of braid group*, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR**972998****[W]**E. Witten,*The Verlinde algebra and the cohomology of the Grassmannian*, IASSNS-HEP-93/41. CMP**96:03**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58D29,
57M05,
17B81,
17B10

Retrieve articles in all journals with MSC (1991): 58D29, 57M05, 17B81, 17B10

Additional Information

**Masato Hayashi**

Affiliation:
Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo

Email:
hayashim@ms318sun.ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-04674-2

Keywords:
Representations of the fundamental group of a surface,
Bruhat decomposition,
fusion rules,
PRV-conjecture

Received by editor(s):
May 13, 1996

Received by editor(s) in revised form:
September 3, 1997

Published electronically:
January 29, 1999

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1999
American Mathematical Society