Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the norm of the product
of linear functionals


Authors: C. Benítez, Manuel Fernández and María L. Soriano
Journal: Proc. Amer. Math. Soc. 127 (1999), 1437-1441
MSC (1991): Primary 46C15, 46B20
DOI: https://doi.org/10.1090/S0002-9939-99-04997-7
Published electronically: January 29, 1999
MathSciNet review: 1622777
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Real inner product spaces are characterized by the points at which the homogeneous 2-polynomials that are products of equal-norm linear functionals attain their norm.


References [Enhancements On Off] (What's this?)

  • 1. D. AMIR, ``Characterizations of inner product spaces", Birkhauser Verlag, Basel, 1986. MR 88m:46001
  • 2. M. BARONTI, Su alcuni parametri degli espazi normati, Bol. Unione Mat. Ital., B(5) 18 (1981), 1065-1085.MR 83b:46017
  • 3. M.M. DAY, Some characterizations of inner product spaces, Trans. Amer. Math. Soc., 62 (1947), 320-337. MR 9:192c
  • 4. R.C. JAMES, Inner products in normed linear spaces, Bull. Amer. Math. Soc., 53 (1947), 559-566. MR 9:42d

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46C15, 46B20

Retrieve articles in all journals with MSC (1991): 46C15, 46B20


Additional Information

C. Benítez
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Email: cabero@unex.es

Manuel Fernández
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

María L. Soriano
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

DOI: https://doi.org/10.1090/S0002-9939-99-04997-7
Keywords: Characterization of inner product spaces
Received by editor(s): August 24, 1997
Published electronically: January 29, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society