On real quadratic function fields

of Chowla type with ideal class number one

Authors:
Keqin Feng and Weiqun Hu

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1301-1307

MSC (1991):
Primary 11R11, 11R29

Published electronically:
January 27, 1999

MathSciNet review:
1622805

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the finite field with elements, (2), , where is a square-free polynomial in with and . In this paper several equivalent conditions for the ideal class number to be one are presented and all such quadratic function fields with are determined.

**1.**E.Artin, Quadratische Körper in Gebiet der höhren Kongruenzen I,II,*Math. Zeit*.**19**(1924),154-246.**2.**Max Deuring,*Lectures on the theory of algebraic functions of one variable*, Lecture Notes in Mathematics, Vol. 314, Springer-Verlag, Berlin-New York, 1973. MR**0344231****3.**Ke Qin Feng and Shu Ling Sun,*On class number of quadratic function fields*, Algebraic structures and number theory (Hong Kong, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 88–113. MR**1098044****4.**Weiqun Hu, On the Minkowski constant for function fields, preprint, 1997.**5.**James R. C. Leitzel, Manohar L. Madan, and Clifford S. Queen,*Algebraic function fields with small class number*, J. Number Theory**7**(1975), 11–27. MR**0369326****6.**R. E. MacRae,*On unique factorization in certain rings of algebraic functions*, J. Algebra**17**(1971), 243–261. MR**0272762****7.**Manohar L. Madan and Clifford S. Queen,*Algebraic function fields of class number one*, Acta Arith.**20**(1972), 423–432. MR**0306160****8.**R. A. Mollin,*Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla*, Proc. Amer. Math. Soc.**102**(1988), no. 1, 17–21. MR**915707**, 10.1090/S0002-9939-1988-0915707-1**9.**R. A. Mollin and H. C. Williams,*A conjecture of S. Chowla via the generalized Riemann hypothesis*, Proc. Amer. Math. Soc.**102**(1988), no. 4, 794–796. MR**934844**, 10.1090/S0002-9939-1988-0934844-9**10.**Xian Ke Zhang,*Ambiguous classes and 2-rank of class group of quadratic function field*, J. China Univ. Sci. Tech.**17**(1987), no. 4, 425–431 (English, with Chinese summary). MR**943934**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11R11,
11R29

Retrieve articles in all journals with MSC (1991): 11R11, 11R29

Additional Information

**Keqin Feng**

Affiliation:
Graduate School at Beijing, University of Science and Technology of China, P. O. Box 3908, Beijing 100039, People’s Republic of China

**Weiqun Hu**

Affiliation:
The Fundamental Science Department, Nanjing Agriculture College, Nanjing 210038, People’s Republic of China

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-05004-2

Keywords:
Quadradic field,
function field,
class number

Received by editor(s):
August 20, 1997

Published electronically:
January 27, 1999

Additional Notes:
Research supported by the Natural Science Foundation and the National Educational Committee of China.

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society