Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Completeness of eigenvectors of group
representations of operators whose
Arveson spectrum is scattered


Author: Sen-Zhong Huang
Journal: Proc. Amer. Math. Soc. 127 (1999), 1473-1482
MSC (1991): Primary 47A67, 47A10
Published electronically: January 29, 1999
MathSciNet review: 1621945
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the following result.

Theorem. Let $\alpha:G\to {\mathcal L}(X)$ be a $\sigma(X,X_*)$ integrable bounded group representation whose Arveson spectrum $\operatorname{Sp}(\alpha)$ is scattered. Then the subspace generated by all eigenvectors of the dual representation $\alpha^*$ is $w^*$ dense in $X^*.$ Moreover, the $\sigma(X,X_*)$ closed subalgebra $W_\alpha$ generated by the operators $\alpha _t$ ($t\in G$) is semisimple.

If, in addition, $X$ does not contain any copy of $c_0,$ then the subspace spanned by all eigenvectors of $\alpha$ is $\sigma(X,X_*)$ dense in $X.$ Hence, the representation $\alpha$ is almost periodic whenever it is strongly continuous.


References [Enhancements On Off] (What's this?)

  • 1. William Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217–243. MR 0348518
  • 2. BASKAKOV, A.G., Spectral criteria for almost periodicity of solutions of functional equations. Math. Notes of Acad. Sci. USSR 24 (1978), 606-612.
  • 3. Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. Vol. 1, Springer-Verlag, New York-Heidelberg, 1979. 𝐶*- and 𝑊*-algebras, algebras, symmetry groups, decomposition of states; Texts and Monographs in Physics. MR 545651
  • 4. Alain Connes, Une classification des facteurs de type 𝐼𝐼𝐼, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 0341115
  • 5. Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Gordon and Breach, Science Publishers, New York-London-Paris, 1968. Mathematics and its Applications, Vol. 9. MR 0394282
  • 6. K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 0131784
  • 7. Claudio D’Antoni, Roberto Longo, and László Zsidó, A spectral mapping theorem for locally compact groups of operators, Pacific J. Math. 103 (1982), no. 1, 17–24. MR 687960
  • 8. DUGUNDJI, J., Topology, 4th. ed. Allyn and Bacon Inc., Boston, 1968.
  • 9. G. M. Fel′dman, The semisimplicity of an algebra generated by an isometric operator, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 93–94 (Russian). MR 0361800
  • 10. GELFAND, I.M., Ideale und primäre Ideale in normierten Ringen. Mat. Sb. 9 (1941), 41-47.
  • 11. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
  • 12. Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, R. I., 1974. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, Vol. XXXI. MR 0423094
  • 13. Sen Zhong Huang, Characterizing spectra of closed operators through existence of slowly growing solutions of their Cauchy problems, Studia Math. 116 (1995), no. 1, 23–41. MR 1355062
  • 14. HUANG, S.-Z., Spectral Theory for Non-Quasianalytic Representations of Locally Compact Abelian Groups. Thesis, Universität Tübingen, 1996. A complete summary is given in ``Dissertation Summaries in Mathematics'' 1 (1996), 171-178.
  • 15. HUANG, S.-Z., VAN NEERVEN, J. AND RÄBIGER, F., Ditkin's condition for certain Beurling algebras. Proc. Amer. Math. Soc. 126 (1998), 1397-1407. CMP 97:11
  • 16. Ulrich Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411
  • 17. L. H. Loomis, The spectral characterization of a class of almost periodic functions., Ann. of Math. (2) 72 (1960), 362–368. MR 0120502
  • 18. Yurii I. Lyubich, Introduction to the theory of Banach representations of groups, Operator Theory: Advances and Applications, vol. 30, Birkhäuser Verlag, Basel, 1988. Translated from the Russian by A. Jacob [Andrei Iacob]. MR 1015717
  • 19. B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, Cambridge-New York, 1982. Translated from the Russian by L. W. Longdon. MR 690064
  • 20. Gilbert Muraz and Quôc Phóng Vũ, Semisimple Banach algebras generated by strongly continuous representations of locally compact abelian groups, J. Funct. Anal. 126 (1994), no. 1, 1–6. MR 1305060, 10.1006/jfan.1994.1138
  • 21. Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962. MR 0152834
  • 22. Allan M. Sinclair, The Banach algebra generated by a hermitian operator, Proc. London Math. Soc. (3) 24 (1972), 681–691. MR 0305068

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A67, 47A10

Retrieve articles in all journals with MSC (1991): 47A67, 47A10


Additional Information

Sen-Zhong Huang
Affiliation: Mathematisches Institut, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany
Address at time of publication: Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany
Email: huang@sun.math.uni-rostock.de

DOI: https://doi.org/10.1090/S0002-9939-99-05016-9
Keywords: Spectrum of group representation, almost periodicity
Received by editor(s): September 1, 1997
Published electronically: January 29, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 1999 American Mathematical Society