Nonoscillation theorems for second order nonlinear differential equations
Author:
James S. W. Wong
Journal:
Proc. Amer. Math. Soc. 127 (1999), 13871395
MSC (1991):
Primary 34C10, 34C15
Published electronically:
January 28, 1999
MathSciNet review:
1622997
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove nonoscillation theorems for the second order EmdenFowler equation (E): , , where and . It is shown that when is nondecreasing for any and is bounded above, then (E) is nonoscillatory. This improves a wellknown result of Belohorec in the sublinear case, i.e. when and .
 1.
S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Casopis Solven. Akad. Vied. 11 (1961), 250255. (in Czech).
 2.
Štefan
Belohorec, On some properties of the equation
𝑦′′(𝑥)+𝑓(𝑥)𝑦^{𝛼}(𝑥)=0,
0<𝛼<1, Mat. Casopis Sloven. Akad. Vied
17 (1967), 10–19 (English, with Russian summary). MR 0214854
(35 #5703)
 3.
Kuo
Liang Chiou, The existence of oscillatory solutions
for the equation
𝑑²𝑦/𝑑𝑡²+𝑞(𝑡)𝑦^{𝑟}=0,0<𝑟<1,
Proc. Amer. Math. Soc. 35 (1972), 120–122. MR 0301292
(46 #450), http://dx.doi.org/10.1090/S00029939197203012922
 4.
C.
V. Coffman and J.
S. W. Wong, Oscillation and nonoscillation of
solutions of generalized EmdenFowler equations, Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 0296413
(45 #5473), http://dx.doi.org/10.1090/S00029947197202964139
 5.
C.
V. Coffman and J.
S. W. Wong, Oscillation and nonoscillation theorems for second
order ordinary differential equations, Funkcial. Ekvac.
15 (1972), 119–130. MR 0333337
(48 #11662)
 6.
Lynn
H. Erbe and James
S. Muldowney, On the existence of oscillatory solutions to
nonlinear differential equations, Ann. Mat. Pura Appl. (4)
109 (1976), 23–38. MR 0481254
(58 #1380)
 7.
Lynn
H. Erbe and James
S. Muldowney, Nonoscillation results for second order nonlinear
differential equations, Rocky Mountain J. Math. 12
(1982), no. 4, 635–642. MR 683858
(84a:34031), http://dx.doi.org/10.1216/RMJ1982124635
 8.
H.
E. Gollwitzer, Nonoscillation theorems for a
nonlinear differential equation, Proc. Amer.
Math. Soc. 26
(1970), 78–84. MR 0259243
(41 #3885), http://dx.doi.org/10.1090/S00029939197002592433
 9.
J.
W. Heidel, Uniqueness, continuation, and nonoscillation for a
second order nonlinear differential equation, Pacific J. Math.
32 (1970), 715–721. MR 0259244
(41 #3886)
 10.
J.
W. Heidel and Don
B. Hinton, The existence of oscillatory solutions for a nonlinear
differential equation, SIAM J. Math. Anal. 3 (1972),
344–351. MR 0340721
(49 #5472)
 11.
Miloš
Jasný, On the existence of an oscillating solution of the
nonlinear differential equation of the second order
𝑦′′+𝑓(𝑥)𝑦²ⁿ⁻¹=0,
𝑓(𝑥)>0, Časopis Pěst. Mat.
85 (1960), 78–83 (Russian, with Czech and English
summaries). MR
0142840 (26 #408)
 12.
I.
T. Kiguradze, A note on the oscillation of solutions of the
equation
𝑢′′+𝑎(𝑡)\vert𝑢\vertⁿ𝑠𝑔𝑛𝑢=0,
Časopis Pěst. Mat. 92 (1967), 343–350
(Russian, with Czech and German summaries). MR 0221012
(36 #4064)
 13.
I.
T. Kiguradze, On the oscillatory and monotone solutions of ordinary
differential equations, Arch. Math. (Brno) 14 (1978),
no. 1, 21–44. MR 512742
(80b:34031)
 14.
Jaroslav
Kurzweil, A note on oscillatory solution of equation
𝑦”+𝑓(𝑥)𝑦²ⁿ⁻¹=0,
Časopis Pěst. Mat. 85 (1960), 357–358
(Russian, with English and Czech summaries). MR 0126025
(23 #A3322)
 15.
Man
Kam Kwong and J.
S. W. Wong, Nonoscillation theorems for a second
order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), no. 3, 467–474. MR 684641
(84b:34039), http://dx.doi.org/10.1090/S00029939198306846412
 16.
S.
I. Pohožaev, On the eigenfunctions of the equation
Δ𝑢+𝜆𝑓(𝑢)=0, Dokl. Akad. Nauk
SSSR 165 (1965), 36–39 (Russian). MR 0192184
(33 #411)
 17.
James
S. W. Wong, On the generalized EmdenFowler equation, SIAM
Rev. 17 (1975), 339–360. MR 0367368
(51 #3610)
 18.
James
S. W. Wong, Remarks on nonoscillation theorems for
a second order nonlinear differential equation, Proc. Amer. Math. Soc. 83 (1981), no. 3, 541–546. MR 627687
(82i:34034), http://dx.doi.org/10.1090/S00029939198106276870
 1.
 S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Casopis Solven. Akad. Vied. 11 (1961), 250255. (in Czech).
 2.
 S. Belohorec, On some properties of the equation , , ibid. 17 (1967), 1019. MR 35:5703
 3.
 K. L. Chiou, The existence of oscillatory solutions for the equation , , Proc. Amer. Math. Soc. 35 (1972), 120122. MR 46:450
 4.
 C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized EmdenFowler equations, Trans. Amer. Math. Soc. 167 (1972), 399434. MR 45:5473
 5.
 C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order differential equations, Funkcial. Ekvac. 15 (1972), 119130. MR 48:11662
 6.
 L. H. Erbe and J. S. Muldowney, On the existence of oscillatory solutions to nonlinear differential equations, Annali di Matematica Pure ed Applicata 109 (1976), 2338. MR 58:1380
 7.
 L. H. Erbe and J. S. Muldowney, Nonoscillation results for second order nonlinear differential equation, Rocky Mountain Math. J. 12 (1982), 635642. MR 84a:34031
 8.
 H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1970), 7884. MR 41:3885
 9.
 J. W. Heidel, Uniqueness, continuous and nonoscillation for a second order nonlinear differential equation, Pacific J. Math. 32 (1970), 715721. MR 41:3886
 10.
 J. W. Heidel and D. B. Hinton, The existence of oscillatory solutions for a nonlinear differential equation, SIAM J. Math. Anal. 3 (1972), 344351. MR 49:5472
 11.
 M. Jasny, On the existence of an oscillatory solution of the nonlinear differential equation of the second order , , Casopis Pest Mat. 85 (1960), 7883. MR 26:408
 12.
 I. T. Kiguradze, A note on the oscillation of solution of the equation , Casopis Pest Mat. 92 (1967), 343350. (in Russian). MR 36:4064
 13.
 I. T. Kiguradze, On the oscillatory and monotone solutions of ordinary differential equations, Arch. Math. Scripta Fac. Sci. Nat. 14 (1978), 2144. MR 80b:34031
 14.
 J. Kurzweil, A note on oscillatory solutions of the equations , Casopis Pest Mat. 85 (1960), 357358. (Russian). MR 23:A3322
 15.
 M. K. Kwong and J. S. W. Wong, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), 467474. MR 84b:34039
 16.
 S. I. Pohozaev, Eigenfunctions of the equation , Dokl. Akad. Nauk SSSR 165 (1965), 3639 (in Russian) and Soviet Math. 6 (1965), 14081411 (in English). MR 33:411
 17.
 J. S. W. Wong, On the generalized EmdenFowler equation, SIAM Review 17 (1975), 339360. MR 51:3610
 18.
 J. S. W. Wong, Remarks on nonoscillation theorems for a second order nonlinear differential equation, Proc. Amer. Math. Soc. 83 (1981), 541546. MR 82i:34034
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
34C10,
34C15
Retrieve articles in all journals
with MSC (1991):
34C10,
34C15
Additional Information
James S. W. Wong
Affiliation:
Chinney Investments Ltd., Hong Kong;
City University of Hong Kong, Hong Kong
DOI:
http://dx.doi.org/10.1090/S0002993999050364
PII:
S 00029939(99)050364
Keywords:
Second order,
nonlinear,
ordinary differential equations,
oscillation,
asymptotic behavior
Received by editor(s):
August 7, 1997
Published electronically:
January 28, 1999
Communicated by:
Hal L. Smith
Article copyright:
© Copyright 1999
American Mathematical Society
