Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Estimates for the Green function of a general Sturm-Liouville operator and their applications


Authors: N. Chernyavskaya and L. Shuster
Journal: Proc. Amer. Math. Soc. 127 (1999), 1413-1426
MSC (1991): Primary 34B27
Published electronically: January 29, 1999
MathSciNet review: 1625725
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a general Sturm-Liouville operator with nonnegative coefficients, we obtain two-sided estimates for the Green function, sharp by order on the diagonal.


References [Enhancements On Off] (What's this?)

  • 1. N. A. Chernyavskaya and L. A. Shuster, The WKB method, Differentsial′nye Uravneniya 25 (1989), no. 10, 1826–1829, 1840 (Russian). MR 1025660
  • 2. N. A. Chernyavskaya and L. A. Shuster, A representation of solutions of the Sturm-Liouville equation and its applications, Differentsial′nye Uravneniya 28 (1992), no. 3, 537–540, 552 (Russian, with Russian summary). MR 1190398
  • 3. N. Chernyavskaya and L. Shuster, Estimates for Green’s function of the Sturm-Liouville operator, J. Differential Equations 111 (1994), no. 2, 410–420. MR 1284420, 10.1006/jdeq.1994.1088
  • 4. -, Asymptotic integration of a nonoscillatory second order differential equation with linear perturbation, preprint, AMS PPS # 199508-34-001 (1995).
  • 5. -, Estimates for the Green function of a general Sturm-Liouville operator and their application, preprint, AMS PPS # 1130-34-002 (1997).
  • 6. E. B. Davies and Evans M. Harrell II, Conformally flat Riemannian metrics, Schrödinger operators, and semiclassical approximation, J. Differential Equations 66 (1987), no. 2, 165–188. MR 871993, 10.1016/0022-0396(87)90030-1
  • 7. K. T. Mynbaev and M. O. Otelbaev, Vesovye funktsionalnye prostranstva i spektr differentsialnykh operatorov, “Nauka”, Moscow, 1988 (Russian). With an English summary. MR 950172
  • 8. R. Oĭnarov, Some properties of the Sturm-Liouville operator in 𝐿_{𝑝}, Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 1 (1990), 43–47 (Russian, with Kazakh summary). MR 1089974
  • 9. M. Sapenov and L. Shuster, Estimates of Green's function and theorem on separability of a Sturm-Liouville operator in $L_{p}$, Manuscript deposited at VINITI, No. 8257-B85.
  • 10. L. A. Shuster, A priori estimates for the solutions of the Sturm-Liouville equation and A. M. Molchanov’s criterion, Mat. Zametki 50 (1991), no. 1, 131–138 (Russian); English transl., Math. Notes 50 (1991), no. 1-2, 746–751 (1992). MR 1140361, 10.1007/BF01156613
  • 11. W.A. Steklov, Sur une méthode nouvelle pour résoudre plusiers problems sur le développement d'une fonction arbitraire en séries infinies, Compes Rendus, Paris 144 (1907), 1329-1332.
  • 12. E.C. Titchmarsh, The Theory of Functions, Oxford, 1932.
  • 13. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR 0178117
  • 14. A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34B27

Retrieve articles in all journals with MSC (1991): 34B27


Additional Information

N. Chernyavskaya
Affiliation: Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel

L. Shuster
Affiliation: Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

DOI: https://doi.org/10.1090/S0002-9939-99-05049-2
Received by editor(s): August 21, 1997
Published electronically: January 29, 1999
Additional Notes: Research of the first author supported by the Israel Academy of Sciences, under Grant 431/95.
Research of the second author supported by the Israel Academy of Sciences, under Grant 505/95.
Communicated by: Hal L. Smith
Article copyright: © Copyright 1999 American Mathematical Society