Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Composition operators on Hardy spaces
of a half-plane


Author: Valentin Matache
Journal: Proc. Amer. Math. Soc. 127 (1999), 1483-1491
MSC (1991): Primary 47B38; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9939-99-05060-1
Published electronically: January 29, 1999
MathSciNet review: 1625773
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider composition operators on Hardy spaces of a half-plane. We mainly study boundedness and compactness. We prove that on these spaces there are no compact composition operators.


References [Enhancements On Off] (What's this?)

  • 1. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press Boca Raton, New York, London, Tokyo, 1995. MR 97i:47056
  • 2. P. L. Duren, Theory of $H^{p}$ Spaces, Academic Press, New York, 1970. MR 42:3552
  • 3. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 83g:30037
  • 4. P. R. Halmos, Measure Theory, Van Nostrand, Princeton, NJ, 1950. MR 11:504d
  • 5. K. Hoffman, Banach Spaces of Analytic Functions, Englewood Cliffs, NJ, 1962. MR 24:A2844
  • 6. V. Matache, Composition Operators on $H^{p}$ of the Upper Half-Plane, An. Univ. Timisoara Ser. Stiint. Mat. 27 (1989), 63-66. MR 92k:47063
  • 7. E. A. Nordgren, Composition Operators in Hilbert Spaces, Hilbert Space Operators, Lecture Notes in Mathematics, vol. 693, Springer-Verlag, New York, Heidelberg, Berlin, 1978, pp. 37-63. MR 80d:47046
  • 8. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1993. MR 94k:47049
  • 9. S. D. Sharma, Compact and Hilbert-Schmidt Composition Operators on Hardy Spaces of the Upper Half-Plane, Acta Sci. Math. (Széged) 46 (1983), 197-202. MR 85g:47032
  • 10. S. D. Sharma and R. K. Singh, Composition Operators on Hardy Spaces of the Upper Half-Plane, preprint (1996).
  • 11. R. K. Singh, A Relation Between Composition Operators on $H^{2}({\mathbb{D}})$ and $H^{2}({\Pi ^{+}})$, Pure Appl. Math. Sci. 1 (1974), 1-5. MR 56:12971
  • 12. R. K. Singh and S. D. Sharma, Composition Operators on a Functional Hilbert Space, Bull. Austral. Math. Soc. 20 (1979), 377-384. MR 81c:47034
  • 13. R. K. Singh and S. D. Sharma, Noncompact Composition Operators, Bull. Austral. Math. Soc. 21 (1980), 125-130. MR 81m:47046

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B38, 47B10

Retrieve articles in all journals with MSC (1991): 47B38, 47B10


Additional Information

Valentin Matache
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045-2142
Address at time of publication: Department of Mathematics, University of Puerto Rico, P. O. Box 9018, Mayagüez, Puerto Rico 00681-9018
Email: matache@math.ukans.edu, matache@math.upr.clu.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05060-1
Keywords: Composition operator, Hardy space, compact operator
Received by editor(s): September 1, 1997
Published electronically: January 29, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society