Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A central limit theorem for Markov chains
and applications to hypergroups


Author: Léonard Gallardo
Journal: Proc. Amer. Math. Soc. 127 (1999), 1837-1845
MSC (1991): Primary 60J10, 60F05, 60J15
Published electronically: February 23, 1999
MathSciNet review: 1476127
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(X_n)$ be a homogeneous Markov chain on an unbounded Borel subset of $\mathbb{R}$ with a drift function $d$ which tends to a limit $m_1$ at infinity. Under a very simple hypothesis on the chain we prove that $\displaystyle n^{-1/2} (X_n - \sum^ n_{k=1} d(X_{k-1}))$ converges in distribution to a normal law $N (0, \sigma^2)$ where the variance $\sigma^2$ depends on the asymptotic behaviour of $(X_n)$. When $d - m_1$ goes to zero quickly enough and $m_1 \neq 0$, the random centering may be replaced by $n m_1.$ These results are applied to the case of random walks on some hypergroups.


References [Enhancements On Off] (What's this?)

  • [B] N. H. Bingham, Random walk on spheres, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 169–192. MR 0305485
  • [Br] B. M. Brown, Martingale central limit theorems, Ann. Math. Statist. 42 (1971), 59–66. MR 0290428
  • [B.H] Walter R. Bloom and Herbert Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, vol. 20, Walter de Gruyter & Co., Berlin, 1995. MR 1312826
  • [B.S] B. L. J. Braaksma and H. S. V. de Snoo, Generalized translation operators associated with a singular differential operator, Ordinary and partial differential equations (Proc. Conf., Univ. Dundee, Dundee, 1974) Springer, Berlin, 1974, pp. 62–77. Lecture Notes in Math., Vol. 415. MR 0422913
  • [C] Houcine Chebli, Opérateurs de translation généralisée et semi-groupes de convolution, Théorie du potentiel et analyse harmonique (Journées Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973) Springer, Berlin, 1974, pp. 35–59. Lecture Notes in Math., Vol. 404 (French). MR 0374545
  • [F.K] Mogens Flensted-Jensen and Tom Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262. MR 0340938
  • [G1] Léonard Gallardo, Une loi des grands nombres pour certaines chaînes de Markov à dérive asymptotiquement stable et applications, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 6, 567–572 (French, with English and French summaries). MR 1270083
  • [G2] Léonard Gallardo, Asymptotic behaviour of the paths of random walks on some commutative hypergroups, Applications of hypergroups and related measure algebras (Seattle, WA, 1993), Contemp. Math., vol. 183, Amer. Math. Soc., Providence, RI, 1995, pp. 135–169. MR 1334776, 10.1090/conm/183/02059
  • [G3] L. Gallardo Chaînes de Markov à dérive stable et loi des grands nombres sur les hypergroupes. Ann. Inst. Henri Poincaré Vol 32 n$^\circ$ 6, 1996, p. 701-723. CMP 97:05
  • [G4] L. Gallardo Asymptotic drift of the convolution and moment functions on hypergroups. Math. Zeitschrift., Vol. 224, n$^\circ$ 3, 1997, p. 427-444. CMP 97:09
  • [G.G] Léonard Gallardo and Olivier Gebuhrer, Marches aléatoires et hypergroupes, Exposition. Math. 5 (1987), no. 1, 41–73 (French, with English summary). MR 880257
  • [H.H] D. Hall , C. Heyde Martingale limit theory and its applications. Academic Press (1980).
  • [K] J. F. C. Kingman, Random walks with spherical symmetry, Acta Math. 109 (1963), 11–53. MR 0149567
  • [R] D. Revuz, Markov chains, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 11. MR 0415773
  • [Z1] Hansmartin Zeuner, One-dimensional hypergroups, Adv. Math. 76 (1989), no. 1, 1–18. MR 1004484, 10.1016/0001-8708(89)90041-8
  • [Z2] Hansmartin Zeuner, Laws of large numbers of hypergroups on 𝑅₊, Math. Ann. 283 (1989), no. 4, 657–678. MR 990594, 10.1007/BF01442859

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60J10, 60F05, 60J15

Retrieve articles in all journals with MSC (1991): 60J10, 60F05, 60J15


Additional Information

Léonard Gallardo
Affiliation: Departement de Mathematiques, Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
Email: gallardo@univ-tours.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04665-1
Received by editor(s): April 14, 1997
Received by editor(s) in revised form: September 22, 1997
Published electronically: February 23, 1999
Communicated by: Stanley Sawyer
Article copyright: © Copyright 1999 American Mathematical Society