Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A central limit theorem for Markov chains
and applications to hypergroups


Author: Léonard Gallardo
Journal: Proc. Amer. Math. Soc. 127 (1999), 1837-1845
MSC (1991): Primary 60J10, 60F05, 60J15
DOI: https://doi.org/10.1090/S0002-9939-99-04665-1
Published electronically: February 23, 1999
MathSciNet review: 1476127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(X_n)$ be a homogeneous Markov chain on an unbounded Borel subset of $\mathbb{R}$ with a drift function $d$ which tends to a limit $m_1$ at infinity. Under a very simple hypothesis on the chain we prove that $\displaystyle n^{-1/2} (X_n - \sum^ n_{k=1} d(X_{k-1}))$ converges in distribution to a normal law $N (0, \sigma^2)$ where the variance $\sigma^2$ depends on the asymptotic behaviour of $(X_n)$. When $d - m_1$ goes to zero quickly enough and $m_1 \neq 0$, the random centering may be replaced by $n m_1.$ These results are applied to the case of random walks on some hypergroups.


References [Enhancements On Off] (What's this?)

  • [B] N.H. Bingham Random walk on spheres. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 22 (1972), 169-192. MR 46:4615
  • [Br] B.M. Brown Martingale Central Limit Theorems Annals of Math. Stat. V 42 (1971), p. 59-66. MR 44:7609
  • [B.H] W.R. Bloom , H. Heyer Harmonic Analysis of Probability Measures on Hypergroups. Walter de Gruyter. Berlin-New York (1995). MR 96a:43001
  • [B.S] B.L.J Braaksma, H.S.V. de Snoo Generalized translation operators associated with a singular differential operator. Lecture notes in Math 415 (1974) Springer Verlag , p. 62-77. MR 54:10898
  • [C] H. Chébli Opérateurs de translation généralisée et semi groupes de convolution. Lecture Notes in Math 404 (1974), p. 35-59. MR 51:10745
  • [F.K] M. Flensted-Jensen , T. Koornwinder The convolution structure for Jacobi function expansions. Arkiv för Math. 11 (1973) p. 245-262. MR 49:5688
  • [G1] L. Gallardo Une loi des grands nombres pour certaines chaînes de Markov à dérive asymptotiquement stable et applications (with an abridged English version). C.R. Acad. Sci. Paris, t. 318, Série I, (1994) p. 567-572. MR 94m:60133
  • [G2] L.Gallardo Asymptotic behaviour of the paths of random walks on some commutative hypergroups. Contemporary Math. Volume 183 (1995) p. 135-169. MR 96d:60012
  • [G3] L. Gallardo Chaînes de Markov à dérive stable et loi des grands nombres sur les hypergroupes. Ann. Inst. Henri Poincaré Vol 32 n$^\circ$ 6, 1996, p. 701-723. CMP 97:05
  • [G4] L. Gallardo Asymptotic drift of the convolution and moment functions on hypergroups. Math. Zeitschrift., Vol. 224, n$^\circ$ 3, 1997, p. 427-444. CMP 97:09
  • [G.G] L. Gallardo , O. Gebuhrer Marches aléatoires et hypergroupes. Expositiones Math. 5 (1987) $n^\circ$ 1, p. 41-73. MR 89g:60024
  • [H.H] D. Hall , C. Heyde Martingale limit theory and its applications. Academic Press (1980).
  • [K] J.F.C. Kingman Random walks with spherical symmetry. Acta Math. 109 (1963) p. 11-53. MR 26:7052
  • [R] D. Revuz Markov chains. North Holland (1975) MR 54:3852
  • [Z1] H. Zeuner One dimensional hypergroups. Adv. in Math. 76 (1989) $n^\circ$ 1 p. 1-18. MR 90i:43002
  • [Z2] H. Zeuner Laws of large numbers for hypergroups on $\mathbb{R}_+$ Math. Ann. 283 (1989) $n^\circ$ 4, p. 657-678. MR 90j:60016

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60J10, 60F05, 60J15

Retrieve articles in all journals with MSC (1991): 60J10, 60F05, 60J15


Additional Information

Léonard Gallardo
Affiliation: Departement de Mathematiques, Université de Tours, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
Email: gallardo@univ-tours.fr

DOI: https://doi.org/10.1090/S0002-9939-99-04665-1
Received by editor(s): April 14, 1997
Received by editor(s) in revised form: September 22, 1997
Published electronically: February 23, 1999
Communicated by: Stanley Sawyer
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society