Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 

 

On the irrationality of a certain $q$ series


Authors: Peter B. Borwein and Ping Zhou
Journal: Proc. Amer. Math. Soc. 127 (1999), 1605-1613
MSC (1991): Primary 11J72
Published electronically: February 17, 1999
Erratum: Proc. Amer. Math. Soc. 132 (2004), 3131-3131.
MathSciNet review: 1485462
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $q$ is an integer greater than one, $r$ and $s$ are any positive rationals such that $1+q^mr-q^{2m}s\neq 0$ for all integers $m\geq 0$, then

\begin{displaymath}\sum _{j=0}^\infty \frac 1{1+q^jr-q^{2j}s} \end{displaymath}

is irrational and is not a Liouville number.


References [Enhancements On Off] (What's this?)

  • [1] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
  • [2] P.B.Borwein, Padé Approximants for the $q$-Elementary Functions, Constr. Approx. 4(1988): 391-402.
  • [3] Peter B. Borwein, On the irrationality of ∑(1/(𝑞ⁿ+𝑟)), J. Number Theory 37 (1991), no. 3, 253–259. MR 1096442, 10.1016/S0022-314X(05)80041-1
  • [4] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Number theory (New York, 1982) Lecture Notes in Math., vol. 1052, Springer, Berlin, 1984, pp. 37–84. MR 750662, 10.1007/BFb0071540
  • [5] P. Erdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 63–66. MR 0029405
  • [6] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
  • [7] George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
  • [8] K.Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus, J. Reine Angew. Math. 166(1931), 118-150.
  • [9] Rolf Wallisser, Rationale Approximation des 𝑞-Analogons der Exponential-funktion und Irrationalitätsaussagen für diese Funktion, Arch. Math. (Basel) 44 (1985), no. 1, 59–64 (German). MR 778992, 10.1007/BF01193781
  • [10] P.Zhou, On the Irrationality of the Infinite Product $\prod _{j=0}^\infty (1+q^{-j}r+q^{-2j}s),$ Math. Proc. Camb. Phil. Soci., to appear, 1999.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11J72

Retrieve articles in all journals with MSC (1991): 11J72


Additional Information

Peter B. Borwein
Affiliation: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Email: pborwein@cecm.sfu.ca

Ping Zhou
Affiliation: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Email: pzhou@cecm.sfu.ca

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04722-X
Received by editor(s): September 16, 1997
Published electronically: February 17, 1999
Communicated by: David E. Rohrlich
Article copyright: © Copyright 1999 by the authors