On a theorem of Scott and Swarup
Author:
Mahan Mitra
Journal:
Proc. Amer. Math. Soc. 127 (1999), 16251631
MSC (1991):
Primary 20F32, 57M50
Published electronically:
February 17, 1999
MathSciNet review:
1610757
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an exact sequence of hyperbolic groups induced by an automorphism of the free group . Let be a finitely generated distorted subgroup of . Then there exist and a free factor of such that the conjugacy class of is preserved by and contains a finite index subgroup of a conjugate of . This is an analog of a theorem of Scott and Swarup for surfaces in hyperbolic 3manifolds.
 1.
M.
Bestvina and M.
Feighn, A combination theorem for negatively curved groups, J.
Differential Geom. 35 (1992), no. 1, 85–101. MR 1152226
(93d:53053)
 2.
M. Bestvina, M. Feighn, and M. Handel. The Tits' alternative for Out() I: Dynamics of exponentially growing automorphisms. preprint.
 3.
M.
Bestvina, M.
Feighn, and M.
Handel, Laminations, trees, and irreducible automorphisms of free
groups, Geom. Funct. Anal. 7 (1997), no. 2,
215–244. MR 1445386
(98c:20045), http://dx.doi.org/10.1007/PL00001618
 4.
Mladen
Bestvina and Michael
Handel, Train tracks and automorphisms of free groups, Ann. of
Math. (2) 135 (1992), no. 1, 1–51. MR 1147956
(92m:20017), http://dx.doi.org/10.2307/2946562
 5.
J. Cannon and W. P. Thurston. Group Invariant Peano Curves. preprint.
 6.
Benson
Farb, The extrinsic geometry of subgroups and the generalized word
problem, Proc. London Math. Soc. (3) 68 (1994),
no. 3, 577–593. MR 1262309
(94m:20073), http://dx.doi.org/10.1112/plms/s368.3.577
 7.
M.
Gromov, Asymptotic invariants of infinite groups, Geometric
group theory, Vol.\ 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser.,
vol. 182, Cambridge Univ. Press, Cambridge, 1993,
pp. 1–295. MR 1253544
(95m:20041)
 8.
M.
Gromov, Hyperbolic groups, Essays in group theory, Math. Sci.
Res. Inst. Publ., vol. 8, Springer, New York, 1987,
pp. 75–263. MR 919829
(89e:20070), http://dx.doi.org/10.1007/9781461395867_3
 9.
M. Mitra. Ending Laminations for Hyperbolic Group Extensions. Geom. Funct. Anal. vol.7 No. 2, pages 379402, 1997. CMP (97:11
 10.
M. Mitra. PhD Thesis, U.C.Berkeley. 1997.
 11.
M. Mitra. CannonThurston Maps for Hyperbolic Group Extensions. Topology, 1998.
 12.
Peter
Scott, Subgroups of surface groups are almost geometric, J.
London Math. Soc. (2) 17 (1978), no. 3,
555–565. MR 0494062
(58 #12996)
Peter
Scott, Correction to: “Subgroups of surface groups are almost
geometric” [J. London Math. Soc. (2) 17 (1978), no. 3, 555–565;
MR0494062 (58 #12996)], J. London Math. Soc. (2) 32
(1985), no. 2, 217–220. MR 811778
(87k:57003), http://dx.doi.org/10.1112/jlms/s232.2.217
 13.
G.
P. Scott and G.
A. Swarup, Geometric finiteness of certain
Kleinian groups, Proc. Amer. Math. Soc.
109 (1990), no. 3,
765–768. MR 1013981
(90k:57002), http://dx.doi.org/10.1090/S00029939199010139816
 14.
Hamish
Short, Quasiconvexity and a theorem of Howson’s, Group
theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ.,
River Edge, NJ, 1991, pp. 168–176. MR 1170365
(93d:20071)
 1.
 M. Bestvina and M. Feighn. A Combination theorem for Negatively Curved Groups. J. Diff. Geom., vol 35, pages 85101, 1992. MR 93d:53053
 2.
 M. Bestvina, M. Feighn, and M. Handel. The Tits' alternative for Out() I: Dynamics of exponentially growing automorphisms. preprint.
 3.
 M. Bestvina, M. Feighn, and M. Handel. Laminations, trees and irreducible automorphisms of free groups. Geom. Funct. Anal. vol.7 No. 2, pages 215244, 1997. MR 98c:20045
 4.
 M. Bestvina and M. Handel. Train tracks and automorpfisms of free groups. Ann. Math. 135, pages 151, 1992. MR 92m:20017
 5.
 J. Cannon and W. P. Thurston. Group Invariant Peano Curves. preprint.
 6.
 B. Farb. The extrinsic geometry of subgroups and the generalized word problem. Proc. London Math. Soc. (3) 68, pages 577593, 1994. MR 94m:20073
 7.
 M. Gromov. Asymptotic Invariants of Infinite Groups. in Geometric Group Theory,vol.2; Lond. Math. Soc. Lecture Notes 182 (1993), Cambridge University Press, 1997. MR 95m:20041
 8.
 M. Gromov. Hyperbolic Groups. in Essays in Group Theory, ed. Gersten, MSRI Publ.,vol.8, Springer Verlag,1985, pages 75263, 1997. MR 89e:20070
 9.
 M. Mitra. Ending Laminations for Hyperbolic Group Extensions. Geom. Funct. Anal. vol.7 No. 2, pages 379402, 1997. CMP (97:11
 10.
 M. Mitra. PhD Thesis, U.C.Berkeley. 1997.
 11.
 M. Mitra. CannonThurston Maps for Hyperbolic Group Extensions. Topology, 1998.
 12.
 P. Scott. Subgroups of surface groups are almost geometric. Journal L.M.S. 17, pages 55565, 1978. MR 58:12996; MR 87k:57003
 13.
 P. Scott and G. Swarup. Geometric Finiteness of Certain Kleinian Groups. Proc. AMS 109, pages 765768, 1990. MR 90k:57002
 14.
 H. Short. Quasiconvexity and a theorem of Howson's. Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky eds.), 1991. MR 93d:20071
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20F32,
57M50
Retrieve articles in all journals
with MSC (1991):
20F32,
57M50
Additional Information
Mahan Mitra
Affiliation:
Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
Address at time of publication:
Institute of Mathematical Sciences, C.I.T. Campus, Madras (Chennai)  600113, India
Email:
mitra@imsc.ernet.in
DOI:
http://dx.doi.org/10.1090/S0002993999049357
PII:
S 00029939(99)049357
Received by editor(s):
September 22, 1997
Published electronically:
February 17, 1999
Additional Notes:
The author’s research was partly supported by an Alfred P. Sloan Doctoral Dissertation Fellowship, Grant No. DD 595
Communicated by:
Christopher Croke
Article copyright:
© Copyright 1999
American Mathematical Society
