AVERAGE ROOT NUMBERS
IN FAMILIES OF ELLIPTIC CURVES

OTTAVIO G. RIZZO

(Communicated by David E. Rohrlich)

Abstract. We introduce a height measure on \mathbb{Q} to count rational numbers. Through it, we prove a density result on the average value of the root numbers of families of twists of elliptic curves.

Zagier and Kramarz computed in [11] the rank of the curves $x^3 + y^3 = m$, with m an integer $< 70,000$. These data suggest that the rank is even for exactly half of the twists of $x^3 + y^3 = 1$. This conjecture has been proved (conditionally on the Birch and Swinnerton-Dyer conjecture) by Mai in [4]. Define, as usual, the root number $W(E)$ of an elliptic curve E as the sign of the functional equation of the L series associated to E (see C.16 of [9]). According to the parity conjecture, $W(E) = (-1)^{\text{rank}(E)}$.

Given a proper definition of average, we can express Mai’s result as saying that the average value of the root numbers of the quadratic twists of $x^3 + y^3 = 1$ is 0.

Let $H(m/n) = \max\{|m|, |n|\}$ be the height of m/n, where m and n are relatively prime integers.

Definition. The average value of a function $\psi : \mathbb{Q} \rightarrow \mathbb{R}$ is

$$\text{Av}_t \psi(t) = \lim_{T \rightarrow \infty} \frac{\sum_{H(t) < T} \psi(t)}{\sum_{H(t) < T} 1},$$

where t varies in \mathbb{Q}, provided that the limit exists.

Fix throughout this paper an elliptic curve E: $y^2 = x^3 + Ax + B$ defined over \mathbb{Q}, and a polynomial $f(t) \in \mathbb{Q}[t]$. Denote by $E^{f(t)}$ the family of twists $f(t)y^2 = x^3 + Ax + B$. One would expect $\text{Av}_t W(E^{f(t)})$ to be 0, as in the Zagier–Kramarz case—actually, we have exactly the opposite result:

Theorem 1. Let E be a fixed elliptic curve defined over \mathbb{Q}. Given any open subset I of $[-1, 1]$, there exists a polynomial $f(t) \in \mathbb{Q}[t]$ of degree at most four, such that $\text{Av}_t W(E^{f(t)}) \in I$.

To prove this result, we introduce a height measure on \mathbb{Q}, and we express the average value of a function as an integral. Using results of Rohrlich [6], we find enough polynomials to realize the conditions of the theorem.

Received by the editors September 15, 1997.

1991 Mathematics Subject Classification. Primary 11G05; Secondary 11D25, 11C08, 28C10.

This research was partially written while the author was supported by a grant of the Istituto Nazionale di Alta Matematica di Rome.

©1999 American Mathematical Society
1. **The Height Measure**

Definition. For any subset U of \mathbb{Q}, we define its *height measure* to be the following limit, provided it exists:

$$\mu(U) = \lim_{t \to \infty} \frac{\#\{r \in U : H(r) \leq t\}}{\#\{r \in \mathbb{Q} : H(r) \leq t\}}.$$

If the limit exists, we say that U is μ-measurable.

Remark 2. There exist subsets of \mathbb{Q} which are not μ-measurable.

Recall that a set field is a non-empty family Σ of subsets of a set S that contains the empty set, the complement of each element of Σ, and every finite union of elements of Σ. Unfortunately, the height measure is not a measure in the classic sense, since it is not σ-additive: $\mathbb{Q} = \bigcup_{r \in \mathbb{Q}} \{r\}$, but $\mu(\mathbb{Q}) = 1$, while $\sum_r \mu\{\{r\}\} = 0$.

On the other hand, it is a positive valued additive set function on the set field generated by intervals (see III.1 of [3]).

Proposition 3. Let U and U' be μ-measurable subsets of \mathbb{Q}. Then the following properties hold:

1. $\mu(\emptyset) = 0$;
2. $U \cup U'$ is μ-measurable, and $\mu(U \cup U') \leq \mu(U) + \mu(U')$, with equality holding if U and U' are disjoint;
3. $\mu(\mathbb{Q}) = 1$.

Proof. Points 1 and 3 follow immediately from the definition of μ, so does point 2 when U and U' are disjoint. To prove point 2 in general, one uses the identity $U \cup U' = (U \setminus U') \cup (U \cap U') \cup (U' \setminus U)$.

Theorem 4. μ is an additive set function on the set field generated by the intervals in \mathbb{Q}. Furthermore, its value is given by

$$(1) \quad \mu((-\infty, x]) = \begin{cases} \frac{-1}{4t} & \text{if } x \leq -1, \\ \frac{1}{2} + \frac{x}{4} & \text{if } |x| \leq 1, \\ 1 - \frac{1}{4t} & \text{if } x \geq 1. \end{cases}$$

Definition. For every integer $t > 0$, we define

$$\Phi(t) = \{r \in \mathbb{Q} : H(r) = t\},$$

$$\Phi(t, x) = \{r \in \mathbb{Q} : H(r) = t, r \leq x\}.$$

Lemma 5. If $t > 1$, then $\#\Phi(t) = 4\phi(t)$.

Proof. If we write $r = m/n$, with m and n relatively prime integers and with $n > 0$, then $\Phi(t) = \{m/n : (m, n) \in \mathbb{Z} \times \mathbb{Z}^{>0}, \max\{|m|, n\} = t, \gcd(m, n) = 1\}$.

If $t > 1$, then clearly $\pm t/t \notin \Phi(t)$ and

$$\Phi(t) = \{\pm t/n : n \in \mathbb{Z}, 1 \leq n \leq t, \gcd(n, t) = 1\}$$

$$\cup \{m/t : m \in \mathbb{Z}, -t \leq m \leq t, \gcd(m, t) = 1\},$$

whose order is $4\phi(t)$.

Definition. In analogy to Euler’s ϕ function, we define for any positive integer t and any positive number x, a function

$$\phi(t, x) = \#\{\text{positive integers } \leq x \text{ which are relatively prime to } t\}$$
and a function
\[\phi(t, x) = \#\{\text{positive integers } < x \text{ which are relatively prime to } t\}. \]

Proposition 6. Suppose \(t > 1 \). Then
\[
\#\Phi(t, x) = \begin{cases}
\phi(t, -t/x) & \text{if } x \leq -1, \\
2\phi(t) - \phi(t, -xt) & \text{if } -1 \leq x \leq 0, \\
2\phi(t) + \phi(t, xt) & \text{if } 0 \leq x \leq 1, \\
4\phi(t) - \phi(t, -t/x) & \text{if } x \geq 1.
\end{cases}
\]

Proof. Analogously to the proof of Lemma 5, we can rewrite \(\Phi(t, x) \) as
\[
\left\{ \frac{m}{n} : (m, n) \in \mathbb{Z} \times \mathbb{Z}^+, \max\{|m|, n\} = t, \gcd(m, n) = 1, m \leq xn \right\}.
\]
Suppose now that \(x \leq -1 \); then \(m \leq -n \) and \(t = H(m/n) = -m \). Thus
\[\Phi(t, x) = \{-t/n : n \in \mathbb{Z}, \gcd(n, t) = 1, 1 \leq n \leq -t/x\}. \]
Hence, \(\#\Phi(t, x) = \phi(t, -t/x) \). The other cases are similar. \(\square \)

Proposition 7. For any \(x \) and \(t > 0 \) we have that
\[\left| \phi(t, x) - \frac{\pi}{2} \phi(t) \right| \leq d(t), \]
where \(d(n) \) is the number of divisors of \(n \). As \(T \) increases to infinity,
\[\sum_{t \leq T} \phi(t, x) = \frac{x}{2\zeta(2)} T^2 + O(T \log T), \]
where the \(O \)-constant is independent of \(x \). The same estimates hold when \(\phi \) is replaced by \(\tilde{\phi} \).

Proof. By definition, \(\phi(t, x) \) is equal to
\[\phi(t, x) = \sum_{\substack{n \leq x \\ \gcd(n, t) = 1}} 1. \]
Let \(\mu(n) \) be as usual the Möbius function of \(n \). We have that, for every positive integer \(n \),
\[\sum_{d|n} \mu(d) = \begin{cases}
1 & \text{if } n = 1, \\
0 & \text{if } n > 1.
\end{cases} \]
(See, for example, Theorem 2.1 of [1].) Then
\[\phi(t, x) = \sum_{n \leq x} \sum_{d|(n, t)} \mu(d) = \sum_{d|t} \sum_{n \leq x} \mu(d) = \sum_{d|t} \left\lfloor \frac{x}{d} \right\rfloor \mu(d) = \sum_{d|t} \frac{\mu(d)}{d} x - \sum_{d|t} \mu(d) \left(\frac{x}{d} - \left\lfloor \frac{x}{d} \right\rfloor \right). \]
It is well known (see Theorem 2.3 of [1]) that \(\sum_{d|t} \mu(d)/d = \phi(t)/t \). Therefore, since
\[\left| \mu(d) \left(\frac{x}{d} - \left\lfloor \frac{x}{d} \right\rfloor \right) \right| \leq 1, \]
we have that
\[\left| \phi(t, x) - \frac{\phi(t)}{t} x \right| \leq d(t). \]
Analogously, we have that
\[\tilde{\phi}(t, x) = \sum_{d | t} \sum_{n < x} \mu(d) = \sum_{d | t} \frac{\mu(d)}{d} x + \sum_{d | t} \mu(d) \left(\left\lfloor \frac{x}{d} \right\rfloor - \frac{x}{d} - 1 \right). \]

Once again we get
\[\left| \mu(d) \left(\left\lfloor \frac{x}{d} \right\rfloor - \frac{x}{d} - 1 \right) \right| \leq 1, \]
thus
\[\left| \tilde{\phi}(t, x) - \frac{\phi(t)}{t} x \right| \leq d(t). \]

The second part follows at once from the following formulae, as \(T \) tends to infinity (see Theorems 3.3, 11.7, and 3.7 of [1]):

\begin{align*}
\sum_{n < x} d(n) &= T \log T + O(T), \\
\sum_{n < x} \phi(n) &= \frac{1}{2\zeta(2)} T^2 + O(T \log T).
\end{align*}

Proof of Theorem 4. Suppose that eq. (1) holds: it follows immediately that intervals are \(\mu \)-measurable. By Proposition 3, all finite combinations of intervals are \(\mu \)-measurable. Thus, \(\mu \) is additive on the set field generated by intervals.

We are left to prove eq. (1): we have that
\[\lim_{T \to \infty} \frac{\# \{ r \in \mathbb{Q} : H(r) \leq T, r \leq x \}}{\# \{ r \in \mathbb{Q} : H(r) \leq T \}} = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} \Phi(t, x)}{\sum_{t=1}^{T} \Phi(t)}. \]

Suppose that \(x \leq 1 \). Then, by Lemma 5 and Proposition 6,
\[\lim_{T \to \infty} \frac{\sum_{t=1}^{T} \Phi(t, x)}{\sum_{t=1}^{T} \Phi(t)} = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} \phi(t, -t/x)}{\sum_{t=1}^{T} 4\phi(t)}. \]

By Proposition 7 and eq. (2), this is
\[= \lim_{T \to \infty} \frac{\sum_{t=1}^{T} \left(-\frac{1}{2} \phi(t) + O(d(t)) \right)}{\sum_{t=1}^{T} 4\phi(t)} = -\frac{1}{4x} + O\left(\frac{T \log T}{\sum_{t=1}^{T} \phi(t)} \right). \]

By eq. (3), the error term is actually \(O(\log T/T) \), so that the limit converges and \(\mu(x) = -1/4x \). The remaining cases are proved in a similar way.

Definition. The height measure \(\mu \) of \(\mathbb{R} \) is the measure induced on the Borel sets of \(\mathbb{R} \) by the function \(\mu(x) \).

Remark 8. Since \(\mu(x) \) is a bounded monotone increasing continuous function, differentiable at every \(x \neq \pm 1 \), by standard measure theory \(\mu \) is well defined (see, for example, Chapter 7 of [8], in particular Exercise 13), and it is absolutely continuous with respect to the standard Lebesgue measure.

Proposition 9. Let \(f \) be a step function over \(\mathbb{Q} \), i.e., \(f = \sum_{i=0}^{n} a_i \chi_i \), where \(a_i \in \mathbb{Q} \) and \(\chi_i \) is the characteristic function of an interval. Then \(\text{Av} f(t) = \int_{\mathbb{R}} f(t) \, d\mu(t) \).
Proof. If \(\chi \) is the characteristic function of some interval \(I \), then it is clear that
\[
\text{Av} \chi(t) = \lim_{T \to \infty} \frac{\# \{ r \in \mathbb{Q} : H(r) \leq T, r \in I \}}{\# \{ r \in \mathbb{Q} : H(r) \leq T \}} = \mu(I) = \int_{\mathbb{R}} \chi(t) \, d\mu(t).
\]
By linearity, we get the same result for \(f \).

2. Root numbers

Recall that the root number of an elliptic curve has an intrinsic definition (see [2], [10] and especially [7]) independent of any conjectures, as a product of local factors.

Definition. Given an elliptic curve \(E \) and a polynomial \(f(t) \), we say that \(f(t) \) is a Rohrlich polynomial for \(E \) if, for every \(t \) such that \(f(t) \neq 0 \), \(W(E f(t)) = \epsilon \text{sgn} f(t) \), where \(\epsilon = 1 \) is independent of \(t \).

Proposition 10. Let \(m, n \) be even integers with \(0 \leq m \leq n \). If \(E \) does not satisfy the technical condition (§6) of [6], we further suppose that \(n \) is divisible by 4. Then there exists an irreducible polynomial \(f(t) \in \mathbb{Q}[t] \), Rohrlich for \(E \), of degree \(n \), and exactly \(m \) real zeros, all of them simple.

Proof. See Proposition 8 of [6].

Notation. Given a real function \(f(t) \), write \(s_f(t) \) for the function \(\text{sgn} f(t) \).

Proposition 11. Let \(f \) be a Rohrlich polynomial for \(E \) of even degree \(n \). For any rational number \(r \neq 0 \), define \(g(t) = r^n f(t/r) \). Then \(g(t) \) is a Rohrlich polynomial for \(E \).

Proof. Since \(n \) is even, \(f(t) = f(r/t) \mod \mathbb{Q}^* \). Hence,
\[
W \left(E f(t) \right) = W \left(E f(t/r) \right) = \text{sgn} f(t/r) = \text{sgn} f(t/r).
\]

Lemma 12. Suppose \(f(t) \) is a Rohrlich polynomial for \(E \). Then, for every \(r \in \mathbb{Q} \), \(g(t) = f(t-r) \) is Rohrlich.

Proof. Obvious.

Proposition 13. Let \(f \) be a polynomial with real coefficients, even degree, and an even number of real roots. Let \(\epsilon = \lim_{|t| \to \infty} s_f(t) \). Define a map
\[
\lambda: \mathbb{R} \to \mathbb{R}
\]
\[
\lambda(r) = \int_{\mathbb{R}} s_{f_r}(t) \, d\mu(t).
\]
Assume that \(\epsilon f(0) < 0 \). Then \(\lambda(\mathbb{Q}) \) is dense in \([-1, 1]\).

Proof. The idea is to prove that:
1. \(\lim_{r \to \infty} \lambda(r) = \epsilon \).
2. \(\lim_{r \to 0} \lambda(r) = s_f(0) \).
3. \(\lambda \) is a continuous function from \(\mathbb{R} \) to \(\mathbb{R} \).
Thus, if the two limits are +1 and −1, then $\lambda(r)$ spans $[-1,1]$ as r runs from 0 to ∞. Restricting r to Q leaves the image of λ dense.

Let x_1, \ldots, x_m be the real roots of f, and let $x_0 = -\infty$, $x_{m+1} = +\infty$. By assumption $f(0) \neq 0$, say $x_{i_0} < 0 < x_{i_0+1}$. Let χ_i be the characteristic function of (x_i, x_{i+1}). Since we assumed that f has even degree and an even number of real roots, we can decompose $s_f(t) = \sum_{i=0}^{m}(-1)^i \chi_i(t)$. Since $s_f(t) = s_f(t/r)$,

$$\lim_{r \to \infty} \int_{\mathbb{R}} s_f(t) \, d\mu(t) = \epsilon \sum_{i=0}^{m}(-1)^i \lim_{r \to \infty} \int_{\mathbb{R}} \chi_i(t/r) \, d\mu(t),$$

where we can exchange the limit with the sum, since the latter is finite. By Theorem 4,

$$\lim_{r \to \infty} \int_{\mathbb{R}} \chi_0(t/r) \, d\mu(t) = \lim_{r \to \infty} \mu(x_0/r) - \mu(-\infty) = \mu(0) - \mu(-\infty) = \frac{1}{2}. \tag{4}$$

Analogously,

$$\lim_{r \to \infty} \int_{\mathbb{R}} \chi_m(t/r) \, d\mu(t) = \frac{1}{2}. \tag{5}$$

On the other hand, for any $i = 1, \ldots, m-1$,

$$\lim_{r \to \infty} \int_{\mathbb{R}} \chi_i(t/r) \, d\mu(t) = \lim_{r \to \infty} \mu(x_{i+1}/r) - \mu(x_{i}/r) = 0. \tag{6}$$

Putting (4), (5) and (6) together, we have proved that

$$\lim_{r \to \infty} \int_{\mathbb{R}} s_f(t) \, d\mu(t) = \epsilon.$$

Consider now the same problem as r decreases to 0. If $i \neq i_0$, then $\chi_i(t/r) \to 0$; on the other hand, $\chi_{i_0}(t/r) \to 1$. Hence,

$$\lim_{r \to 0} \int_{\mathbb{R}} \chi_i(t/r) \, d\mu(t) = \begin{cases} 1 & \text{if } i = i_0, \\ 0 & \text{otherwise}. \end{cases}$$

Therefore,

$$\lim_{r \to 0} \int_{\mathbb{R}} s_f(t) \, d\mu(t) = s_f(0).$$

We are left to prove the continuity of λ. Since s_f is a finite linear combination of characteristic functions of intervals, it is enough to prove that the map

$$r \to \int_{\mathbb{R}} \chi_{(a,b)}(t/r) \, d\mu(t) = \int_{ar}^{br} \mu(t) = \mu(br) - \mu(ar)$$

is continuous for any $-\infty \leq a \leq b \leq \infty$, where $\chi_{(a,b)}$ is the characteristic function of (a,b). Since μ is bounded and $\mu(t)$ is continuous by Theorem 4, we are done. \qed

Proof of Theorem 1. By Proposition 10, we can choose a polynomial f of degree two or four, with exactly two real roots $x_1 < x_2$, both simple. By Lemma 12, we can suppose that $x_1 < 0 < x_2$. By Propositions 9 and 11,

$$\text{Av} W\left(E_{f,t}(\cdot)\right) = \int_{\mathbb{R}} s_f(t) \, d\mu(t). \tag{7}$$

But f satisfies the conditions of Proposition 13, and this proves the statement of the theorem. \qed
3. Example

Let E be the modular curve $X_0(11)$: $y^2 + y = x^3 - x^2 - 10x - 20$, and let $f(t) = 11 - t^2$. It is shown in 4.2.1 of [5], using the machinery of [6], that $W(E_{f(t)}) = -\text{sgn } f(t)$.

Proposition 14. If E and f are as above, we have that:

1. For any $r \in \mathbb{Q}$, $r > 0$,
 \[
 \text{Av}_r W(E_{f^r(t)}) = \begin{cases}
 1/(r\sqrt{11}) - 1 & \text{if } r\sqrt{11} > 1, \\
 1 - r\sqrt{11} & \text{if } r\sqrt{11} < 1.
 \end{cases}
 \]

2. The set \{ $\text{Av}_r W(E_{f^r(t)}) : r \in \mathbb{Q}, r > 0$ \} is dense in $[-1, 1]$.

Proof. As in eq. (7), we have that
\[
\text{Av}_r W(E_{f^r(t)}) = \int_{\mathbb{R}} -\text{sgn } (11r^2 - t^2) \, d\mu(t),
\]

since the roots of $11r^2 - t^2$ are $t = \sqrt{11}r$, this is
\[
= 1 + 2\mu(-r\sqrt{11}) - 2\mu(r\sqrt{11}).
\]

Item 1 now follows from Theorem 4. Item 2 follows either from 1 or from Theorem 1.

References

Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912

Current address: Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

E-mail address: otto@math.brown.edu