SPECIAL-VALUED SUBGROUPS
OF LATTICE-ORDERED GROUPS

YUANQIAN CHEN AND PAUL CONRAD

(Communicated by Lance W. Small)

Abstract. We prove that the intersection of all maximal special-valued subgroups of a lattice-ordered group \(G \) is the special-valued quasi-torsion radical of a lattice-ordered group \(G \), which extends our earlier result that the intersection of all maximal finite-valued subgroups of a lattice-ordered group \(G \) is the finite-valued torsion radical of \(G \). We also show that the class \(A_f \) of almost finite-valued lattice-ordered groups is a quasi-torsion class, and the \(A_f \) quasi-torsion radical of a group is equal to the intersection of the group with the lateral completion of the finite-valued torsion radical of the group.

Introduction

For the basic definitions and results in lattice-ordered group theory, see M. Anderson and T. Feil [2] and M. Darnel [8]. A lattice-ordered group, written \(\ell \)-group, is a partially ordered group \((G, \leq)\) where the partial order is a lattice (meaning that each pair of elements \(a, b \) of \(G \) has a least upper bound \(a \lor b \) and a greatest lower bound \(a \land b \)). An \(\ell \)-subgroup \(A \) of an \(\ell \)-group \(G \) is both a subgroup and a sublattice of \(G \). \(A \) is a convex \(\ell \)-subgroup of \(G \) if \(a, b \in A \) and \(a \leq g \leq b \) imply that \(g \in A \). A normal convex \(\ell \)-subgroup is an \(\ell \)-ideal. A convex \(\ell \)-subgroup which is maximal with respect to not containing some \(g \in G \) is called regular and is a value of \(g \). A regular subgroup \(A \) is an essential value if it contains all the values for some \(g \in G \). Element \(g \) is special if it has a unique value and in this case the value is called a special value. Regular subgroups of \(G \) form a root system under inclusion, written \(\Gamma(G) \). (That is, \(\Gamma(G) \) is a partially ordered set for which \(\{ \alpha \in \Gamma(G) \mid \alpha \geq \gamma \} \) is totally ordered, for any \(\gamma \in \Gamma(G) \).) A subset \(\Delta \subseteq \Gamma(G) \) is plenary if \(\cap \Delta = \{0\} \) and \(\Delta \) is a dual ideal in \(\Gamma(G) \); that is, if \(\delta \in \Delta, \gamma \in \Gamma(G) \) and \(\gamma > \delta \), then \(\gamma \in \Delta \). If \(G \) is an abelian \(\ell \)-group, then \(G \) is \(\ell \)-isomorphic to an \(\ell \)-subgroup of \(V(\Gamma(G), R) \) such that if \(\gamma \) is a value of \(g \in G \), then \(\gamma \) is a maximal component of \(g \) after the embedding, where \(V(\Gamma(G), R) \) is the abelian \(\ell \)-group of all real-valued functions \(v \) on \(\Gamma(G) \) for which \(v(\gamma) \in R \) and the support of each \(v \) satisfies the ascending chain condition. This is a consequence of the Conrad-Harvey-Holland embedding theorem for abelian lattice-ordered groups.

Received by the editors July 16, 1996 and, in revised form, September 2, 1997.
1991 Mathematics Subject Classification. Primary 06F15, 06F20; Secondary 20F60.
Key words and phrases. Torsion class and quasi-torsion class, finite-valued and special-valued subgroups of a lattice-ordered group.

©1999 American Mathematical Society

1893
\(\Sigma(\Delta, R) \) is the \(\ell \)-subgroup of \(V(\Delta, R) \) containing all elements \(v \in V \) with finite supports. \(F(\Delta, R) \) is the \(\ell \)-subgroup of \(V(\Delta, R) \) containing all elements \(v \in V \) whose supports are contained in a finite number of chains in \(\Delta \).

For any \(g \in G \), \(G(g) = \{ h \in G \mid |h| \leq n \mid g \} \), for some positive integer \(n \), the principal convex \(\ell \)-subgroup of \(G \) generated by \(g \), is the least convex \(\ell \)-subgroup of \(G \) that contains \(g \).

An \(\ell \)-group \(G \) is finite-valued if every element of \(G \) has only a finite number of values; this is equivalent to the statement that every element of \(G \) can be expressed as a finite sum of disjoint special elements. Each element of \(G \) is also called finite-valued. An \(\ell \)-group \(G \) is special-valued if \(G \) has a plenary subset of special values; this is equivalent to the statement that each positive element of \(G \) can be expressed as the join of a set of pairwise disjoint positive special elements. A positive element \(g \) of \(G \) is special-valued if \(g \) can be expressed as the join of disjoint special elements.

A lattice homomorphism is complete if it preserves all (not necessarily finite) meets and joins. A convex \(\ell \)-subgroup is closed if it is closed with respect to infinite meets and joins which exist in the \(\ell \)-group. A convex \(\ell \)-subgroup \(C \) of an \(\ell \)-group \(G \) is closed if and only if the natural lattice homomorphism from \(G \) onto its lattice \(G/C \) of right cosets is complete. Extensions which preserve the lattice of closed convex \(\ell \)-subgroups are called \(\alpha^* \)-extensions.

An \(\ell \)-group is laterally complete (conditionally laterally complete) if for any subset (bounded subset) \(\{g_\alpha \mid \alpha \in A\} \) of disjoint positive elements, \(\lor_{\alpha} g_\alpha \) exists.

A torsion class is a class of lattice-ordered groups that is closed under convex \(\ell \)-subgroups, \(\ell \)-homomorphic images, and joins of convex \(\ell \)-subgroups. For an \(\ell \)-group \(G \) and a torsion class \(T \), \(T(G) \) indicates the join of all the convex \(\ell \)-subgroups of \(G \) that belong to \(T \). \(T(G) \) is then the largest convex \(\ell \)-subgroup of \(G \) that belongs to \(T \), called the torsion radical of \(G \). A quasi-torsion class is a class of \(\ell \)-groups which is closed under convex \(\ell \)-subgroups, complete \(\ell \)-homomorphic images, and joins of convex \(\ell \)-subgroups. For an \(\ell \)-group \(G \) and a quasi-torsion class \(Q \), \(Q(G) \) indicates the join of all the convex \(\ell \)-subgroups of \(G \) that belong to \(Q \). \(Q(G) \) is then the largest convex \(\ell \)-subgroup of \(G \) that belongs to \(Q \), called the quasi-torsion radical of \(G \). Finite-valued \(\ell \)-groups form a torsion class \(F_v \), and special-valued \(\ell \)-groups form a quasi-torsion class \(S \).

We have shown that the finite-valued torsion radical of an \(\ell \)-group \(G \) is the intersection of all maximal finite-valued subgroups of \(G \) [6]. Let \(S \) be the quasi-torsion class of special-valued \(\ell \)-groups. We will show that the quasi-torsion radical \(S(G) \) is the intersection of all the maximal special-valued subgroups of \(G \). We will show that the class \(A_f \) of almost finite-valued \(\ell \)-groups is a quasi-torsion class, and its quasi-torsion radical of \(G \) is equal to the intersection of \(G \) with the lateral completion of the finite-valued torsion radical of \(G \) : \(A_f(G) = F_v(G)^L \cap G \). Also for each \(\ell \)-group \(G \), the following are equivalent:

1. There exists a largest finite-valued subgroup of \(G \).
2. The set \(\Delta \) of special values of \(G \) is an \(\ell \)-ideal of \(\Gamma(G) \).
3. \(S(G) \) is the largest special-valued subgroup of \(G \) and \(S(G) \) is almost finite-valued.

1. Maximal special-valued subgroups

Definition 1.1. A special-valued subgroup of an \(\ell \)-group \(G \) is an \(\ell \)-subgroup \(U \) such that for each \(0 < g \in U \), \(g = \lor_{\alpha} g_\alpha \), where the \(g_\alpha \)'s are disjoint and special in \(G \).
Thus if $g \in U$, then $|g| = \vee_A g_\alpha$, where $g_\alpha \in G$ are disjoint and special, but we don’t require that $g_\alpha \in U$.

If $\cdots \subseteq C_\alpha \subseteq C_\beta \subseteq C_\gamma \subseteq \cdots$ is a chain of special-valued subgroups of G, then $\cup C_\lambda$ is a special-valued subgroup. Hence each special-valued subgroup is contained in a maximal special-valued subgroup.

Proposition 1.2. If $0 < a = \vee_A a_\alpha$ and $0 < b = \vee_B b_\beta$ are special-valued elements in G, where A and B are sets of values, then $a + b$ is special-valued in G with the set of maximal elements in $A \cup B$ as special values.

Proof. Consider

$$0 < a + b = \vee_A a_\alpha + b = \vee_A (a_\alpha + b) = \vee_A (a_\alpha + \vee_B b_\beta) = \vee_A (\vee_B (a_\alpha + b_\beta)) = \vee_{A \cup B} (a_\alpha + b_\beta).$$

Suppose that $\alpha > \beta$, for some $\beta \in B$. Then α is greater than some subset of B and disjoint from the other elements of B.

Thus $(a_\alpha + b_\beta) \vee (a_\alpha + b_\beta_3) \vee (a_\alpha + b_\beta_3) \vee \cdots = a_\alpha + (b_\beta_1 \vee b_\beta_2 \vee b_\beta_3 \vee \cdots)$ is special with value α, and α is maximal in $A \cup B$.

If $\alpha = \beta$, for some $\beta \in B$, then $a_\alpha + b_\beta$ is special with value α, and α is maximal in $A \cup B$.

If α is not comparable with any β, then $a_\alpha + b_\beta = a_\alpha \vee b_\beta$ with values α and β, and both are maximal in $A \cup B$. \hfill \square

Corollary 1.3. If a and b are finite-valued, then so is $a + b$.

Proposition 1.4. If b is a special-valued element with $b > 0$, then $b + a$ is special-valued and has the same special values as b.

Proof. Suppose that $b = \vee_\Lambda b_\lambda$ with b_λ disjoint and special. Then $a = b \wedge a = (\vee_\Lambda b_\lambda) \wedge a = \vee_\Lambda (b_\lambda \wedge a)$. We have

$$b + a = b + \vee_\Lambda (b_\lambda \wedge a) = \vee_\Lambda (b + (b_\lambda + a)) = \vee_\Lambda (\vee_\Lambda b_\gamma + (b_\lambda + a)) = \vee_\Lambda (\vee_\Lambda (b_\gamma + (b_\lambda + a))) = \vee_{\gamma, \lambda} (b_\gamma + (b_\lambda + a)).$$

If $\gamma \neq \lambda$, then $b_\gamma + (b_\lambda \wedge a) = b_\gamma \vee (b_\lambda \wedge a) \leq (b_\gamma + (b_\gamma \wedge a)) \vee (b_\lambda + (b_\lambda \wedge a))$. Therefore $b + a = \vee_\Lambda (b_\lambda + (b_\lambda \wedge a)).$
Now we show that $b_\lambda + (b_\lambda \land a)$ is special with value λ. Since $b_\lambda \in G^\lambda \setminus G_\lambda$, where G_λ is the regular subgroup of G, and G^λ the cover of G_λ, we have $b_\lambda + (b_\lambda \land a) \in G^\lambda \setminus G_\lambda$. Now let α be a value of $b_\lambda + (b_\lambda \land a)$. Then $b_\lambda \notin G_\alpha$, so $G_\alpha \subseteq G_\lambda$. If $G_\alpha \subset G_\lambda$, then $b_\lambda \leq b_\lambda + (b_\lambda \land a) \in G^\alpha \subseteq G_\lambda$. This contradicts the fact that $b_\lambda \in G^\lambda \setminus G_\lambda$. Therefore $\alpha = \lambda$. □

Proposition 1.5. An ℓ-subgroup C is the largest special-valued subgroup of G if and only if $C = S(G)$ which consists of all the special-valued elements of G.

Proof. (\Leftarrow) If C consists of all the special-valued elements of G, then it is the largest special-valued subgroup of G.

(\Rightarrow) If $0 < g$ is special-valued, then the ℓ-subgroup $\langle g \rangle$ of G generated by g is a special-valued subgroup of G. Therefore $\langle g \rangle \subseteq C$, and hence C consists of all the special-valued elements of G.

If b is special-valued and $b > a > 0$, then by the last proposition, $b, b + a \in C$, so $a \in C$. Thus C is convex and hence $C \subseteq S(G)$. Since $S(G)$ is a special-valued subgroup of G, $S(G) \subseteq C$. □

Corollary 1.6. For an ℓ-group G, the following are equivalent:

1. There exists a largest special-valued subgroup of G.
2. $S(G)$ consists of all the special-valued elements of G.
3. $b \in G$ is special and $b > a > 0$ imply that a is special-valued.
4. $S(G)$ contains all the special elements of G.

Proof. By the above proposition $1 \iff 2$, and clearly $2 \implies 3$.

3 \implies 4. b is special implies that $G(b) \subseteq S(G)$, so $S(G)$ contains all the special elements of G.

4 \implies 2. $0 < g$ is special-valued implies that $g = \lor_A g_\lambda$. Each $g_\lambda \in S(G)$, and $S(G)$ is closed. Hence, we have $g \in S(G)$.

Proposition 1.7. Let G be an ℓ-group. If a is a positive special-valued element of G, b is a negative element of $S(G)$, and $a + b$ is positive, then $a + b$ is special-valued in G.

Proof. $0 < a = \lor_A a_\alpha$, where a_α are disjoint and special with value α, and $0 < -b = \lor_B(-b_\beta)$, where $-b_\beta$ are disjoint and special with value β.

Now $0 < a + b = \lor_A a_\alpha + b$, so $0 < -b < \lor_A a_\alpha$, and hence by Proposition 1.4, $(\lor_A a_\alpha - b)$ is special-valued with the same set of special values as $\lor_A a_\alpha$. Thus A is the set of special values for $\lor_A a_\alpha - b = \lor_A a_\alpha + \lor_B(-b_\beta)$. So each β is less than or equal to one and only one α and is incomparable with the other α’s. Now consider

$$0 < a + b = \lor_A a_\alpha + b = \lor_A (a_\alpha + b) = \lor_A ((a_\alpha + b) \lor 0).$$

Case I. $a_\alpha \land |b| = 0$. In this case a is incomparable with all β, thus $(a_\alpha + b) \lor 0 = a_\alpha$.

Case II. $\alpha = \beta$ for some β. We then have

$$0 < -b = \lor_B(-b_\beta) = -b_\beta + \lor_{B \setminus \{\beta\}}(-b_\gamma),$$

where $-b_\beta$ and $\lor_{B \setminus \{\beta\}}(-b_\gamma)$ are disjoint. Hence

$$(a_\alpha + b) \lor 0 = (a_\alpha + b_\beta - \lor_{B \setminus \{\beta\}}(-b_\gamma)) \lor 0 = (a_\alpha + b_\beta) \lor 0$$

is a positive element in $S(G)$ with all special values less than or equal to α, since $a_\alpha + b_\beta$ is disjoint from $\lor_{B \setminus \{\beta\}}(-b_\gamma)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Case III. \(\alpha > \beta \) for some \(\beta \). Let \(B_{\alpha} = \{ \beta \in B \mid \alpha > \beta \} \). Hence for \(\beta \in B \setminus B_{\alpha} \), \(\alpha \parallel \beta \).

We now have that \(-b = \vee_B(-b_3) \) and that \(a_\alpha \wedge (-b) = a_\alpha \wedge \vee_B(-b_3) = \vee_B(a_\alpha \wedge (-b_3)) = \vee_B(-b_3) \), so \(-b = \vee_{B_{\alpha}}(-b_3) + \vee_{B \setminus B_{\alpha}}(-b_3) \) and \(a_\alpha + b = a_\alpha - \vee_{B_{\alpha}}(-b_3) - \vee_{B \setminus B_{\alpha}}(-b_3) \), where \(a_\alpha - \vee_{B_{\alpha}}(-b_3) \) and \(\vee_{B \setminus B_{\alpha}}(-b_3) \) are positive and disjoint. Therefore, \((a_\alpha + b) \vee 0 = a_\alpha - \vee_{B_{\alpha}}(-b_3) \) is special with value \(\alpha \).

Thus \((a_\alpha + b) \vee 0 \) can be written as the join of disjoint special elements and has all its special values less than or equal to \(\alpha \). Hence \(0 < a + b = \vee_A((a_\alpha + b) \vee 0) \) can be written as the join of disjoint special elements, hence is special valued.

Proposition 1.8. If \(U \) is a special-valued subgroup of \(G \), then \(U + S(G) \) is a special-valued subgroup of \(G \).

Proof. Since \(S(G) \) is an \(\ell \)-ideal, we have that \(U + S(G) \) is an \(\ell \)-subgroup of \(G \). Consider \(0 < g = a + b \in U + S(G) \), with \(a \in U \) and \(b \in S(G) \). We have \(g + S(G) = a + S(G) = a \vee 0 + S(G) \), so without loss of generality, we may assume \(a > 0 \). Then \(0 < a + b = a + b^+ - b^- \), where \(a + b^+ \) can be written as the join of disjoint special elements of \(G \). So by Proposition 1.7, \(a + b \) can be written as the join of disjoint special elements of \(G \).

We are now ready to describe the special-valued quasi-torsion radical for an \(\ell \)-group by its maximal special-valued subgroups.

Theorem 1.9. \(S(G) \) is the intersection of all the maximal special-valued subgroups of \(G \).

Proof. By Proposition 1.8, \(S(G) \) is contained in the intersection of all the maximal special-valued subgroups of \(G \). Now we pick \(0 < a \in G \setminus S(G) \). We need to show there exists a maximal special-valued subgroup that does not contain \(a \). If \(a \) is not special-valued, then it does not belong to any special-valued subgroups of \(G \). Now suppose that \(a = a_1 \vee a_2 \vee a_3 \vee \cdots \), where \(a_i \in G \) are disjoint and special. \(G(a) \not\subseteq S(G) \), so there exists \(b \in G \) such that \(a > b > 0 \) and \(b \) is not special-valued in \(G \). By Proposition 1.4, \(a + b \) is special-valued. Thus there exists a maximal special-valued subgroup of \(G \) that contains \(a + b \) but not \(a \).

Proposition 1.10. If \(0 < a \) and \(0 < b \) are special-valued elements in an \(\ell \)-group \(G \), then so are \(a \wedge b \) and \(a \vee b \).

Proof. Consider \(0 < \vee_A a_\alpha \) and \(0 < \vee_B b_\beta \), where the \(a_\alpha \)'s are disjoint and \(a_\alpha \) has special value \(\alpha \), and the \(b_\beta \)'s are disjoint and \(b_\beta \) has special value \(\beta \).

Let \(C = \{ \alpha \in A \mid \text{there exists } \beta \in B \text{ comparable with } \alpha \} \). Then \(C = C_1 \cup C_2 \), where \(C_1 = \{ \alpha \in C \mid \beta \leq \alpha \text{ for some } \beta \in B \} \) and \(C_2 = \{ \alpha \in C \mid \alpha < \beta \text{ for some } \beta \in B \} \).

We have
\[
 a \vee b = (\vee_A a_\alpha) \vee (\vee_B b_\beta) = \vee_A(a_\alpha \wedge (\vee_B b_\beta)) = \vee_A(\vee_B(a_\alpha \vee b_\beta)) \\
 = \vee_{A \cup B}(a_\alpha \vee b_\beta) = \vee_A \vee_C (a_\alpha \vee b_\beta) \vee_{B \setminus C} b_\beta \\
 = \vee_A \vee_C (a_\alpha \vee (\vee_{C_1} b_\beta)) \vee (b_\beta \vee (\vee_{C_2} a_\alpha)) \vee_{B \setminus C} b_\beta.
\]

Therefore, \(a \vee b \) is special-valued with values maximal in \(A \cup B \). Similarly,
\[
 a \wedge b = (\vee_A a_\alpha) \wedge (\vee_B b_\beta) = \vee_A(a_\alpha \wedge (\vee_B b_\beta)) = \vee_{A \cup B}(a_\alpha \wedge b_\beta) = \vee_C(a_\alpha \wedge b_\beta).
\]

Therefore, \(a \wedge b \) is special-valued with values minimal in \(C \).
Theorem 1.11. A maximal special-valued subgroup U of an abelian ℓ-group G is weakly saturated; i.e., special components of elements of U belong to U.

Proof. Suppose that $v \in U$. Then $v = g_1 \lor g_2 \lor g_3 \lor \ldots$, where $g_i \in G$ are disjoint and special. Assume (by way of contradiction) that $g_1 \notin U$, and let $\langle U, g_1 \rangle$ be the ℓ-subgroup of G generated by U and g_1. Consider $0 < f \in \langle U, g_1 \rangle$. Then

$$f = f \lor 0 = \lor_I \land_J ((u_{ij} \pm n_{ij}g_1) \lor 0)$$

where I and J are finite index sets, $u_{ij} \in U$ and n_{ij} are positive integers. We will first show that for fixed i and j, each $(u_{ij} \pm n_{ij}g_1) \lor 0$ is special-valued.

Consider $(u \pm ng_1) \lor 0$, $u \in U$ hence $|u| = h_1 \lor h_2 \lor h_3 \lor \ldots$, where $h_i \in G$ are disjoint and special. If the value of g_1 is different from all those of u, then clearly $(u \pm ng_1) \lor 0$, is special-valued.

If the value of g_1 is the same as a value of u, say, a value of h_1, but the value of g_1 is the same as that of $h_1 \pm ng_1$, then we have $(u \pm ng_1) \lor 0$ is special-valued.

Now consider the case when the value of g_1 is the same as that of h_1, and values of $h_1 \pm ng_1$ are less than that of g_1. We then have

$$(h_1 \pm ng_1) \lor 0 \leq (u \pm nv) \lor 0 = f_1 \lor f_2 \lor f_3 \lor \ldots$$

where $0 < f_i \in G$ are disjoint and special, since $(u \pm nv) \lor 0 \in U$.

Let $F = \{f_j \mid f_j \leq g_1\}$, $\lor\{f_j \mid f_j \in F\}$ exists in G because $\lor\{f_j \mid f_j \in F\} = (f_1 \lor f_2 \lor f_3 \lor \ldots) \land g_1$. We claim that

$$(h_1 \pm ng_1) \lor 0 = \lor\{f_j \mid f_j \in F\}.$$

Clearly $(h_1 \pm ng_1) \lor 0 \leq \lor\{f_j \mid f_j \in F\}$, since $(h_1 \pm nv) \lor 0 \leq f_1 \lor f_2 \lor f_3 \lor \ldots$. On the other hand, each $f_j \leq (h_1 \pm ng_1) \lor 0$ implies that $\lor\{f_j \mid f_j \in F\} \leq (h_1 \pm ng_1) \lor 0$. We have shown that $(h_1 \pm ng_1) \lor 0$ is special-valued which implies that $(u \pm ng_1) \lor 0$ is special-valued. Thus by Proposition 1.10, $\lor_I \land_J ((u_{ij} \pm n_{ij}g_1) \lor 0)$ is special-valued in G. \hfill \Box

Corollary 1.12. A maximal special-valued subgroup U of an abelian ℓ-group is special-valued as an ℓ-group.

Proof. Let U be a maximal special-valued subgroup of G. For each $0 < u \in U$, $u = g_1 \lor g_2 \lor g_3 \lor \ldots$, where $g_i \in G$ are disjoint and special. By Theorem 1.11, each $g_i \in U$. Also each g_i is special in U. Therefore U is special-valued as an ℓ-group. \hfill \Box

2. Almost finite-valued ℓ-groups

Definition 2.1. An ℓ-group G is almost finite-valued if it is special-valued and the principal convex ℓ-subgroup $G(g)$ is finite-valued for each finite-valued element $g \in G$.

We use A_f to indicate the class of almost finite-valued ℓ-groups. We first list some basic properties of A_f and brief proofs.

1. $F_v \subseteq A_f \subseteq S$, where F_v is the torsion class of finite-valued ℓ-groups, and S is the quasi-torsion class of special-valued ℓ-groups.

2. A_f is closed with respect to products.
Proof. The quasi-torsion class S of special-valued ℓ-groups is closed with respect to products, and if $0 < g$ is special in a product, then it is special in one of the factors, so $G(g)$ is finite-valued.

3. A_f is not closed with respect to ℓ-subgroups.
 For example, for each $x \in [0, 1]$, let R_x be the real numbers. Then
 \[
 \prod_{x \in [0, 1]} R_x \in A_f,
 \]
 but $C[0, 1] \notin S$.

4. $G \in A_f$ does not imply that $G_L \in A_f$.
 For example, let $\Lambda = \{0\}$. Then $\Sigma(\Lambda, R) \in A_f$, but $\Sigma(\Lambda, R)_L = V(\Lambda, R) \notin A_f$.

5. If $G \in A_f$, then $F_v(G)$ is the ℓ-ideal generated by all the $G(g)$ with g special.
 So $F_v(G)$ is the largest finite-valued subgroup of G.

6. A laterally complete special-valued ℓ-group is almost finite-valued if and only if its set of special values Δ contains no copy of Λ.
 Proof. Suppose Λ is contained in Δ. Then let g be a special element with value δ which is the maximal element of Δ. Since G is laterally complete, $G(g)$ contains an element with an infinite number of values. On the other hand, let g be a special element with value δ, and Δ contains no copy of Λ. Then the ideal $\delta = \{\alpha \in \Delta \mid \alpha \leq \delta\}$ contains only a finite number of roots, so $G(g)$ is finite-valued.

7. For a completely distributive ℓ-group G, the following are equivalent:
 (a) G_L is almost finite-valued.
 (b) The plenary set Δ of all essential values of $\Gamma(G)$ contains no copy of the set Λ of (6).

 Proof. By [3], $\Delta \cong$ the set of all the special elements of $\Gamma(G_L)$.

8. If G is a special-valued vector lattice, then without loss of generality, we assume that $\Sigma(\Delta, R) \subseteq G \subseteq V(\Delta, R)$. $V(\Delta, R) \in A_f$ if and only if Δ contains no copy of Λ as in (6). Thus each abelian a^*-extension of G is almost finite-valued if and only if Δ contains no copy of Λ.

Theorem 2.2. For an ℓ-group G, the following are equivalent:
1. There exists a largest finite-valued subgroup of G.
2. $F_v(G)$ consists of all the finite-valued elements of G.
3. $0 < a < b$ and b is special imply that a is finite-valued.
4. b is special implies that $G(b)$ is finite-valued.
5. $F_v(G)$ contains all the special elements of G.
6. The set Δ of special values of G is an ideal of $\Gamma(G)$.
7. $S(G)$ is the largest special-valued subgroup of G, and $S(G)$ is almost finite-valued.

Proof. We proved in [6] that 1, 2, and 3 are equivalent, and clearly 3 \iff 4 and 2 \iff 5.

Now suppose $0 < g \in G$ is special with value G_α. Then $G_\alpha \rightarrow G_\alpha \cap G(g)$ is a one-to-one order-preserving map of the regular subgroups of G that do not contain $G(g)$ onto the regular subgroups of $G(g)$.
6 \rightarrow 4. \Delta is an \ell\text{-ideal of } \Gamma(G) implies that all the regular subgroups of \Gamma(g) are special if \gamma is special. So \Gamma(g) is finite-valued.

4 \rightarrow 7. \Gamma(g) is finite-valued implies that \Gamma(g) \subseteq S(G). So S(G) contains all the special elements.

7 \rightarrow 4. \gamma is special implies \gamma \in S(G). Thus \Gamma(g) \subseteq S(G), hence \Gamma(g) is finite-valued.

4 \rightarrow 6 is clear.

This theorem shows that if \Gamma has a largest finite-valued subgroup, then \Gamma has a largest special-valued subgroup, although the converse is not true.

For example, let \Lambda = \bigwedge \ldots\).

\Gamma = V(\Lambda, R) \in S, but \Gamma has no largest finite-valued subgroup.

Actually, there exists a largest special-valued subgroup of \Gamma if and only if for each special \gamma \in \Gamma, G(\gamma) is special-valued. In turn, this is equivalent to the assertion that for each special value \delta \in \Delta, the ideal \delta = \{\gamma \in \Gamma(G) | \gamma \leq \delta\} contains a dual ideal of special elements with zero intersection.

We now give the proof that \Lambda is a quasi-torsion class.

Theorem 2.3. The almost finite-valued \ell\text{-groups form a quasi-torsion class } \Lambda.

Proof. \Gamma is almost finite-valued if and only if the set \Delta of special values is a plenary subset and an ideal of \Gamma(G). A special-valued \ell\text{-group } \Gamma is almost finite-valued if and only if \Delta is an ideal of \Gamma(G).

1. \Lambda is closed with respect to convex \ell\text{-subgroups.}

Suppose \Gamma is a convex \ell\text{-subgroup of an almost finite-valued \ell\text{-group } \Gamma. Then } \Gamma \subseteq S, since S is a quasi-torsion class. The set \Gamma of all special values of \Gamma is an ideal and a plenary subset of \Gamma, the set of all special values of \Gamma, and \Gamma is an ideal in \Gamma(G). Therefore \Gamma is an ideal in \Gamma(C) and a plenary subset of \Gamma(C).

2. \Lambda is closed with respect to complete \ell\text{-homomorphic images.}

Let \Gamma be a closed \ell\text{-ideal of } \Gamma \subseteq \Lambda. Then \Gamma/C \subseteq S. Suppose \gamma + g is special in \Gamma/C, g = g_1 \vee g_2 \vee g_3 \vee \ldots in G, with not all \gamma_i belonging to C. If there is more than one component of \gamma not in C, say, g_1 is one of them, then \gamma + g_1 is a proper component of \gamma + g, so \gamma + g is not special. So without loss of generality, \gamma is special in G. The convex \ell\text{-subgroup of } G/C generated by \gamma + g is isomorphic to \frac{\Gamma(g)}{C \cap \Gamma(g)} and it is finite-valued, since F_\ell is a torsion class.

3. \Lambda is closed with respect to joins of convex \ell\text{-subgroups.}

S(\Gamma) is the largest convex \ell\text{-subgroup that belongs to } S. If the largest convex \ell\text{-subgroup } \Gamma is almost finite-valued exists, then it is an \ell\text{-ideal of } S(\Gamma). So without loss of generality, we assume that \Gamma is special-valued. A convex \ell\text{-subgroup } C of \Gamma is almost finite-valued if and only if \Gamma is an ideal of \Gamma. So \Gamma is almost finite-valued if and only if \Gamma is an ideal in \Gamma(G).

If \Gamma \subseteq \Gamma \subseteq \Gamma \subseteq \ldots form a chain of convex \ell\text{-subgroups of } \Gamma that belong to \Lambda, then their sets of special values C_1 \subseteq C_2 \subseteq C_3 \subseteq \ldots form a chain of ideals in \Gamma(G), so \Gamma \subseteq C_\Lambda is an ideal in \Gamma(G), hence \Gamma is almost finite-valued.

If B and C are almost finite-valued, and 0 < g \in B + C is special with value \delta, then \gamma \in B or \gamma \in C. In fact, g is equal to the sum of positive elements from B, and one of them must have value \delta. Without loss of generality, there exists 0 < b \in B with a value \delta, hence nb > g for some n \in N, so g \in B. Thus B(g) is
finite-valued, which implies \((B + C)(g)\) is finite-valued. Therefore, \(B + C\) is almost finite-valued.

The torsion radical \(F_v(G)\) is a characteristic \(\ell\)-ideal of \(G\), and \(F_v(G) \subseteq G \subseteq G^L\), where \(G^L\) is the lateral completion of \(G\). Actually, \(F_v(G)^L \subseteq G^L\). This follows from the following proposition.

Proposition 2.4. \(C \in C(G)\), the set of all convex \(\ell\)-subgroups of \(G\), implies that \(C^L \subseteq G^L\).

Proof. \(C \subseteq C''\), the polar of \(C\) in \(G^L\), and since \(C''\) is closed, it is laterally complete. Now \(G\) is dense in \(G^L\), so \(0 < x \in C'' \subseteq G^L\) implies \(x > y > 0\), for some \(y \in G \cap C''\). In particular, \(y\) is not disjoint from \(C^+\), so \(y \wedge c > 0\), for some \(c \in C\). Therefore \(x > y \wedge c \in C\), so \(C\) is dense in the laterally complete \(\ell\)-group \(C''\), and hence \(C^L \subseteq C'' \subseteq G^L\).

The following theorem demonstrates the relation between the torsion radicals \(A_f(G)\) and \(F_v(G)\).

Theorem 2.5. \(A_f(G) = F_v(G)^L \cap G\).

Proof. \(F_v(G)^L\) is special-valued and has the same set \(\Delta\) of special values as \(F_v(G)\) by the result in [3]. Consider \(0 < g \in F_v(G)^L \cap G\), \(g = h_1 \vee h_2 \vee h_3 \vee \cdots\), where \(h_i\) are disjoint and special in \(F_v(G)^L\). Now there exists a special element \(0 < g_1 \in F_v(G)\) with the same value as \(h_1\). Thus \(ng_1 > h_1\) for some \(n \in N\), so \(h_1 = ng_1 \wedge g \in F_v(G)\); thus \(G(h_1)\) is finite-valued.

Suppose \(0 < u < g\) with \(u \in G\). Then \(u = u \wedge g = u \wedge (\vee h_i) = \vee (u \wedge h_i)\). Each \(u \wedge h_i \in G(h_i)\) is finite-valued. Therefore \(u\) is special-valued.

If \(0 < a \in G(g)\) is special, then \(a < ng\), so \(a < nh_i\), for some \(n \in N\). Thus \(G(a)\) is finite-valued. Therefore, \(G(g) \subseteq A_f(G)\), so \(F_v(G)^L \cap G \subseteq A_f(G)\).

Conversely, consider \(0 < g \in A_f(G)\). Then \(g = g_1 \vee g_2 \vee g_3 \vee \cdots\), where \(g_i\) are disjoint and special, and each \(G(g_i)\) is finite-valued. Therefore each \(g_i \in F_v(G)\), so \(g \in F_v(G)^L \cap G\).

Thus if \(G\) is laterally complete, then \(A_f(G) = F_v(G)^L\). So \(G \in A_f\) if and only if \(G = F_v(G)^L\). In fact, the proof of the theorem shows that \(F_v(G)(1) \cap G = A_f(G)\), where \(F_v(G)(1)\) is the \(\ell\)-group generated by the joins of disjoint elements from \(F_v(G)\) [9]. Therefore \(F_v(G)(1) \cap G = F_v(G)^L \cap G\). We now discuss almost finite-valued \(\ell\)-groups that are laterally complete.

Proposition 2.6. Let \(G\) be a special-valued laterally complete \(\ell\)-group. If \(g \in G\) is infinite valued, then \(F_v(G) + g\) is not finite-valued in \(G/F_v(G)\).

Proof. If \(F_v(G) + g\) is finite-valued, then without loss of generality, it is special in \(G/F_v(G)\). But \(g\) can be written as \(a + b\) with \(a \wedge b = 0\), where \(a\) and \(b\) are both infinite-valued. Thus \(F_v(G) + a\) and \(F_v(G) + b\) are non-zero components of \(F_v(G) + g\). This contradicts the fact that \(F_v(G) + g\) is special in \(G/F_v(G)\).

Proposition 2.7. Let \(G\) be a special-valued laterally complete \(\ell\)-group. \(G \in A_f\) if and only if \(G/F_v(G)\) contains no special elements.

Proof. \((\implies)\) If \(g \in G \backslash F_v(G)\), then \(g\) is infinite-valued and hence \(F_v(G) + g\) is not special.
If $0 < g \in G$ is special, then $g \in F_v(G)$. For otherwise $F_v(G) + g$ is not special in $G/F_v(G)$. Therefore $F_v(G)$ contains all the special elements of G, and hence $G \in A_f$.

The next theorem follows from the above theorem and propositions.

Theorem 2.8. For a special-valued laterally complete ℓ-group G, the following are equivalent:

1. $G \in A_f$.
2. $G = F_v(G)^L$.
3. $F_v(G)$ contains all the special elements of G.
4. The set of special values of G contains no copy of $\bigwedge \ldots$.

In particular, this theorem holds for the ℓ-group $V(\Delta, R)$, where Δ is any root system.

References

DEPARTMENT OF MATHEMATICAL SCIENCES, CENTRAL CONNECTICUT STATE UNIVERSITY, NEW BRITAIN, CONNECTICUT 06050

E-mail address: *chen@ccsua.ctstateu.edu*

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045