Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Normality and paracompactness
of the Fell topology

Authors: L'. Holá, S. Levi and J. Pelant
Journal: Proc. Amer. Math. Soc. 127 (1999), 2193-2197
MSC (1991): Primary 54B20
Published electronically: March 1, 1999
MathSciNet review: 1485480
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a Hausdorff topological space and $CL(X)$ the hyperspace of all closed nonempty subsets of $X$. We show that the Fell topology on $CL(X)$ is normal if and only if the space $X$ is Lindelöf and locally compact. For the Fell topology normality, paracompactness and Lindelöfness are equivalent.

References [Enhancements On Off] (What's this?)

  • [At] H. Attouch, Variational convergence for functions and operators, Pitman, Boston, 1984. MR 86f:49002
  • [Be1] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, 1993. MR 95k:49001
  • [Be2] G. Beer, On the Fell topology, Set-Valued Analysis 1 (1993), 69-80. MR 95a:54024
  • [BT] G. Beer, R.Tamaki, The infimal value functional and the uniformization of hit-and-miss hyperspace topologies, Proc. Amer. Math. Soc. 122 (1994), 601-611. MR 95a:54023
  • [En] R.Engelking, General Topology, PWN Warszawa, 1977. MR 58:18316b
  • [Fe] J.Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc.Amer.Math.Soc. 13 (1962), 472-476. MR 25:2573
  • [Fl] J.Flachsmeyer, Verschiedene Topologisierungen im Raum der abgeschlossenen Teilmengen, Math. Nachr. 26 (1964), 321-337. MR 30:4233
  • [HL] L.Hola, S.Levi, Decomposition properties of hyperspace topologies, Set-Valued Analysis to appear.
  • [Ke1] J.Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760-766. MR 40:6507
  • [Ke2] J.Keesling, On the equivalence of normality and compactness in hyperspaces, Pacific J. Math. 33 (1970), 657-667. MR 42:2418
  • [Ma] G. Matheron, Random sets and integral geometry, Wiley, New York, 1975. MR 52:6828
  • [Mi] E.Michael, Topologies on spaces of subsets, Trans. Amer.Math. Soc. 71 (1951), 152-182.
  • [Po] H.Poppe, Einige Bemerkungen uber der raum der abgeschlossen mengen, Fund. Math. 59 (1966), 159-169. MR 33:6573
  • [Ve] N.H. Velicko, On the space of closed subsets, Sibirsk.Math.Z. 16 (1975), 627-629. (Russian; English translation: Siberian Math. J. 16 (1975), 484-486). MR 51:13969

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54B20

Retrieve articles in all journals with MSC (1991): 54B20

Additional Information

L'. Holá
Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefániková 49 Bratislava, Slovakia

S. Levi
Affiliation: Dipartimento di Matematica, Universita di Milano, Via C. Saldini 50, 20133 Milano, Italy

J. Pelant
Affiliation: Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha, Czech republic

Keywords: Fell topology, locally compact Hausdorff space, Lindel\"{o}f space, normal space, $\sigma $-compact
Received by editor(s): February 12, 1997
Received by editor(s) in revised form: October 7, 1997
Published electronically: March 1, 1999
Additional Notes: The third author was partially supported by the grant GACR 201/94/0069 and the grant 119 401 of Acad. Sci. CR
Communicated by: Alan Dow
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society