Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Measures on finite concrete logics


Author: Peter G. Ovchinnikov
Journal: Proc. Amer. Math. Soc. 127 (1999), 1957-1966
MSC (1991): Primary 06C15; Secondary 81P10
Published electronically: February 26, 1999
MathSciNet review: 1487334
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the possibility to extend measures and signed measures on a concrete logic on a finite set to those on all its subsets.


References [Enhancements On Off] (What's this?)

  • 1. Ladislav Beran, Orthomodular lattices, Academia [Publishing House of the Czech Academy of Sciences], Prague, 1984. Algebraic approach. MR 785005
  • 2. Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
  • 3. G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843.
  • 4. L. J. Bunce and J. D. Maitland Wright, The Mackey-Gleason problem, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 288–293. MR 1121569, 10.1090/S0273-0979-1992-00274-4
  • 5. Erik Christensen, Measures on projections and physical states, Comm. Math. Phys. 86 (1982), no. 4, 529–538. MR 679201
  • 6. P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
  • 7. Jozef Dravecký and Ján Šipoš, On the additivity of Gudder integral, Math. Slovaca 30 (1980), no. 3, 299–303 (English, with Russian summary). MR 587257
  • 8. Andrew M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893. MR 0096113
  • 9. S. Gudder, Stochastic methods in quantum mechanics, North Holland, New York, 1979.
  • 10. Stanley P. Gudder, An extension of classical measure theory, SIAM Rev. 26 (1984), no. 1, 71–89. MR 735076, 10.1137/1026002
  • 11. Stanley Gudder and Jean-Paul Marchand, A coarse-grained measure theory, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 11-12, 557–564 (1981) (English, with Russian summary). MR 628642
  • 12. Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183
  • 13. Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
  • 14. M. S. Matveĭčuk, A theorem on the states of quantum logics, Teoret. Mat. Fiz. 45 (1980), no. 2, 244–250 (Russian, with English summary). MR 604523
  • 15. M. S. Matveĭchuk, A theorem on the states of quantum logics. II, Teoret. Mat. Fiz. 48 (1981), no. 2, 261–265 (Russian, with English summary). MR 630189
  • 16. -, The description of finite measures in semifinite algebras, Funk. Anal. Prilozhen. 15 (3) (1981), 41-53 (Russian).
  • 17. R. Mayet and M. Navara, Classes of logics representable as kernels of measures, in Contr. General Algebra 9 (G.Pilz, ed.), Teubner, Stuttgart/Wien, 1995, pp. 241-248.
  • 18. Mirko Navara, When is the integration on quantum probability spaces additive?, Real Anal. Exchange 14 (1988/89), no. 1, 228–234. MR 988369
  • 19. Mirko Navara, Kernel logics, Tatra Mt. Math. Publ. 3 (1993), 27–30. Measure theory (Liptovský Ján, 1993). MR 1278515
  • 20. Mirko Navara, Quantum logics representable as kernels of measures, Czechoslovak Math. J. 46(121) (1996), no. 4, 587–597. MR 1414596
  • 21. Mirko Navara and Pavel Pták, Two-valued measures on 𝜎-classes, Časopis Pěst. Mat. 108 (1983), no. 3, 225–229 (English, with Russian and Czech summaries). MR 716405
  • 22. P. Ovchinnikov, Structure of measures on quantum logics, Thesis, Kazan State University, Kazan, Russia, 1985 (Russian).
  • 23. -, Problem 4, in Proc. Second Winter School on Measure Theory, Liptovský Ján, January 7-12, 1990, Czecho-Slovakia (A. Dvure\v{c}enskij and S. Pulmannová, eds.), p. 219.
  • 24. P. G. Ovchinnikov, Measures on Gudder and Marchand logics, Constructive theory of functions and functional analysis, No. 8 (Russian), Kazan. Gos. Univ., Kazan′, 1992, pp. 95–98 (Russian). MR 1231108
  • 25. P. G. Ovchinnikov, Galois correspondence associated with the extension of charges on the 𝜎-class of subsets of a finite set, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1994), 36–40 (Russian); English transl., Russian Math. (Iz. VUZ) 38 (1994), no. 5, 34–38. MR 1301691
  • 26. R. Prather, Generating the $k$-subsets of an $n$-set, Amer. Math. Monthly 87 (1980), 740-743.
  • 27. Ronald E. Prather, Generating the 𝑘-subsets of an 𝑛-set, Amer. Math. Monthly 87 (1980), no. 9, 740–743. MR 602834, 10.2307/2321866
  • 28. A. Sherstnev, On Boolean logics, Uch. Zap. KGU 128 (1968), 48-62 (Russian).
  • 29. F. F. Sultanbekov, Charges and automorphisms of a class of finite set logics, Constructive theory of functions and functional analysis, No. 8 (Russian), Kazan. Gos. Univ., Kazan′, 1992, pp. 57–68 (Russian). MR 1231104
  • 30. Foat Sultanbekov, Set logics and their representations, Internat. J. Theoret. Phys. 32 (1993), no. 11, 2177–2186. MR 1254335, 10.1007/BF00675029
  • 31. F. J. Yeadon, Measures on projections in 𝑊*-algebras of type 𝐼𝐼₁, Bull. London Math. Soc. 15 (1983), no. 2, 139–145. MR 689246, 10.1112/blms/15.2.139
  • 32. F. J. Yeadon, Finitely additive measures on projections in finite 𝑊*-algebras, Bull. London Math. Soc. 16 (1984), no. 2, 145–150. MR 737242, 10.1112/blms/16.2.145
  • 33. Julia E. Zerbe and Stanley P. Gudder, Additivity of integrals on generalized measure spaces, J. Combin. Theory Ser. A 39 (1985), no. 1, 42–51. MR 787717, 10.1016/0097-3165(85)90082-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 06C15, 81P10

Retrieve articles in all journals with MSC (1991): 06C15, 81P10


Additional Information

Peter G. Ovchinnikov
Affiliation: Department of Mathematics, Kazan State University, 420008, Kazan, Russia
Email: Petr.Ovchinnikov@ksu.ru

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04761-9
Keywords: Finite concrete logic, measure, signed measure
Received by editor(s): August 15, 1996
Received by editor(s) in revised form: October 8, 1997
Published electronically: February 26, 1999
Additional Notes: This research was supported by the Russian Foundation for Fundamental Research, grants no. 95–01–00025 and no. 96–01–01265.
Communicated by: Andreas R. Blass
Article copyright: © Copyright 1999 American Mathematical Society