A proof of the Hoggatt-Bergum conjecture

Author:
Andrej Dujella

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1999-2005

MSC (1991):
Primary 11D09, 11D25, 11B39; Secondary 11J86, 11Y50

DOI:
https://doi.org/10.1090/S0002-9939-99-04875-3

Published electronically:
March 17, 1999

MathSciNet review:
1605956

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if and are positive integers such that the product of any two distinct elements of the set

increased by is a perfect square, then has to be . This is a generalization of the theorem of Baker and Davenport for .

**1.**J. Arkin, V. E. Hoggatt and E. G. Strauss,*On Euler's solution of a problem of Diophantus*, Fibonacci Quart.**17**(1979), 333-339. MR**80m:10009****2.**A. Baker and H. Davenport,*The equations and*, Quart. J. Math. Oxford Ser. (2)**20**(1969), 129-137. MR**40:1333****3.**A. Baker and G. Wüstholz,*Logarithmic forms and group varieties*, J. Reine Angew. Math.**442**(1993), 19-62. MR**94i:11050****4.**L. E. Dickson,*History of the Theory of Numbers, Vol. 2*, Chelsea, New York, 1966, pp. 513-520. MR**39:6807b****5.**Diophantus of Alexandria,*Arithmetics and the Book of Polygonal Numbers*, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232. MR**56:8263****6.**A. Dujella,*The problem of the extension of a parametric family of Diophantine triples*, Publ. Math. Debrecen**51**(1997), 311-322. CMP**98:05****7.**A. Dujella and A. Peth\H{o},*Generalization of a theorem of Baker and Davenport*, Quart. J. Math. Oxford Ser. (2)**49**(1998), 291-306. CMP**99:01****8.**C. M. Grinstead,*On a method of solving a class of Diophantine equations*, Math. Comp.**32**(1978), 936-940. MR**58:10724****9.**V. E. Hoggatt and G. E. Bergum,*A problem of Fermat and the Fibonacci sequence*, Fibonacci Quart.**15**(1977), 323-330. MR**56:15547****10.**B. W. Jones,*A second variation on a problem of Diophantus and Davenport*, Fibonacci Quart.**16**(1978), 155-165. MR**81h:10075****11.**P. Kanagasabapathy and T. Ponnudurai,*The simultaneous Diophantine equations and*, Quart. J. Math. Oxford Ser. (2)**26**(1975), 275-278. MR**52:8027****12.**K. S. Kedlaya,*Solving constrained Pell equations*, Math. Comp.**67**(1998), 833-842. MR**98g:11147****13.**T. Nagell,*Introduction to Number Theory*, Almqvist, Stockholm, Wiley, New York, 1951. MR**13:207b****14.**G. Sansone,*Il sistema diofanteo , ,*, Ann. Mat. Pura Appl. (4)**111**(1976), 125-151. MR**54:12631**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11D09,
11D25,
11B39,
11J86,
11Y50

Retrieve articles in all journals with MSC (1991): 11D09, 11D25, 11B39, 11J86, 11Y50

Additional Information

**Andrej Dujella**

Affiliation:
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Email:
duje@math.hr

DOI:
https://doi.org/10.1090/S0002-9939-99-04875-3

Keywords:
Fibonacci numbers,
property of Diophantus,
simultaneous Pellian equations,
linear form in logarithms,
Baker-Davenport reduction procedure

Received by editor(s):
October 23, 1997

Published electronically:
March 17, 1999

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 1999
American Mathematical Society