Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Flux for mean curvature 1 surfaces
in hyperbolic 3-space, and applications


Authors: Wayne Rossman, Masaaki Umehara and Kotaro Yamada
Journal: Proc. Amer. Math. Soc. 127 (1999), 2147-2154
MSC (1991): Primary 53A10; Secondary 53A35, 53A42
DOI: https://doi.org/10.1090/S0002-9939-99-04892-3
Published electronically: March 3, 1999
MathSciNet review: 1605941
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Bryant representation, we define a flux on homology classes of CMC-$1$ surfaces in $\mathcal{H}^3$, satisfying a balancing formula which is useful to show nonexistence of certain kinds of complete CMC-$1$ surfaces.


References [Enhancements On Off] (What's this?)

  • [Bie] L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen, Zweite Auflage, Springer-Verlag, 1965. MR 83a:34001
  • [Bry] R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 321-347. CMP 20:16
  • [KK] N. Korevaar and R. Kusner, The global structure of constant mean curvature surfaces, Invent. Math. 114 (1993), 311-332.
  • [KKS] N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geometry 30 (1989), 465-503. MR 90g:53011
  • [KKMS] N. Korevaar, R. Kusner, W. H. Meeks and B. Solomon, Surfaces in Hyperbolic space, Amer. J. Math. 114 (1992), 1-43. MR 92k:53116
  • [N] V. F. de Sousa Neto, Costa type surfaces in hyperbolic space, to appear in the Anais da Academia Brasileira de Matemática.
  • [RUY1] W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus, Tôhoku Math. J. 49 (1997), 449-484. CMP 98:03
  • [RUY2] -, Metrics with conical singularities and CMC-$1$ surfaces of low total curvature in hyperbolic space, in preparation.
  • [Sm] A. J. Small, Surfaces of Constant Mean Curvature $1$ in $H^3$ and Algebraic Curves on a Quadric, Proc. Amer. Math. Soc. 122 (1994), 1211-1220. MR 95b:53011
  • [T1] M. Troyanov, Metric of constant curvature on a sphere with two conical singularities, in ``Differential Geometry'', Lect. Notes in Math. vol. 1410, Springer-Verlag, (1989), 296-306. MR 90m:53057
  • [T2] -, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793-821. MR 91h:53059
  • [UY1] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-$1$ in the hyperbolic $3$-space, Ann. of Math. 137 (1993), 611-638. MR 94c:53015
  • [UY2] -, A parametrization of Weierstrass formulae and perturbation of some complete minimal surfaces of $\mathbf{R}^3$ into the hyperbolic $3$-space, J. reine u. angew. Math. 432 (1992), 93-116. MR 94e:54004
  • [UY3] -, Surfaces of constant mean curvature-$c$ in $H^3(-c^2)$ with prescribed hyperbolic Gauss map, Math. Ann. 304 (1996), 203-224. MR 97b:53017
  • [UY4] -, Another construction of a CMC-$1$ surface in $H^3$, Kyungpook Math. J. 35 (1996), 831-849.
  • [UY5] -, A duality on CMC-$1$ surface in the hyperbolic $3$-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997), 229-237. CMP 97:17
  • [UY6] -, Metric of constant curvature one with three conical singularities on $2$-sphere, preprint (math.DG/9801137).
  • [Y] Z. Yu, Value distribution of hyperbolic Gauss maps, Proc. Amer. Math. Soc. 125 (1997), 2997-3001. MR 97m:53016

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53A10, 53A35, 53A42

Retrieve articles in all journals with MSC (1991): 53A10, 53A35, 53A42


Additional Information

Wayne Rossman
Affiliation: Graduate School of Mathematics, Kyushu University, Fukuoka 812-8581 Japan
Address at time of publication: Department of Mathematics, Faculty of Science, Kobe University, Rokko, Kobe 657-8501, Japan
Email: wayne@math.kyushu-u.ac.jp, wayne@math.kobe-u.ac.jp

Masaaki Umehara
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
Address at time of publication: Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
Email: umehara@math.wani.osaka-u.ac.jp, umehara@math.sci.hiroshima-u.ac.jp

Kotaro Yamada
Affiliation: Department of Mathematics, Faculty of Science, Kumamoto University, Kumamoto 860-8555 Japan
Email: kotaro@gpo.kumamoto-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-04892-3
Received by editor(s): October 15, 1997
Published electronically: March 3, 1999
Additional Notes: The authors were supported by Volkswagen-Stiftung (RiP Program in Mathematisches Forschungsinstitut Oberwolfach). The third author was supported by the Inamori Foundation.
Communicated by: Peter Li
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society