Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Extensions of a theorem
of Marcinkiewicz-Zygmund
and of Rogosinski's formula
and an application to Universal Taylor series


Authors: E. S. Katsoprinakis and M. Papadimitrakis
Journal: Proc. Amer. Math. Soc. 127 (1999), 2083-2090
MSC (1991): Primary 30B30; Secondary 41A58, 42A24, 30E10
Published electronically: March 16, 1999
MathSciNet review: 1641646
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends Rogosinski's formula and the Marcinkiewicz-Zygmund Theorem about circular structure of the limit points of the partial sums of (C,1) summable Taylor series. Also a result about summability of $H^p$ Taylor series is proved and an application on Universal Taylor series is given.


References [Enhancements On Off] (What's this?)

  • 1. G. H. Hardy, Divergent series, Éditions Jacques Gabay, Sceaux, 1992. With a preface by J. E. Littlewood and a note by L. S. Bosanquet; Reprint of the revised (1963) edition. MR 1188874 (93g:01100)
  • 2. Jean-Pierre Kahane, Sur la structure circulaire des ensembles de points limites des sommes partielles d’une série de Taylor, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 247–251 (French). MR 708790 (85f:30003)
  • 3. Kahane, J. -P., Baire Theory in Fourier and Taylor series, Conference in the honor of Donald Newman, Philadelphia, March 1996.
  • 4. Kahane, J. -P., General Properties of Taylor series 1896-1996, L'Escurial, Spain, June 1996. CMP 98:09
  • 5. J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric series and power series, Trans. Amer. Math. Soc. 50 (1941), 407–453. MR 0005130 (3,105d), http://dx.doi.org/10.1090/S0002-9947-1941-0005130-1
  • 6. Melas, A., V. Nestoridis and I. Papadoperakis, Growth of coefficients of universal Taylor series and comparison of two classes of functions, Journal d'Analyse Mathematique 73 (1997) 187-202. CMP 98:10
  • 7. Vassili Nestoridis, Universal Taylor series, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1293–1306 (English, with English and French summaries). MR 1427126 (97k:30001)
  • 8. Nestoridis, V. and S. K. Pichorides, The circular structure of the set of the limit points of partial sums of Taylor series, Seminaire d'Analyse Harmonique, Univ. de Paris-Sud, Mathematiques, Orsay, France (1989-90) 71-77.
  • 9. A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944 (58 #29731)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30B30, 41A58, 42A24, 30E10

Retrieve articles in all journals with MSC (1991): 30B30, 41A58, 42A24, 30E10


Additional Information

E. S. Katsoprinakis
Affiliation: Department of Mathematics, University of Crete, 714 09 Heraklion - Crete, Greece
Email: katsopr@talos.cc.uch.gr

M. Papadimitrakis
Affiliation: Department of Mathematics, University of Crete, 714 09 Heraklion - Crete, Greece
Email: papadim@talos.cc.uch.gr

DOI: http://dx.doi.org/10.1090/S0002-9939-99-05150-3
PII: S 0002-9939(99)05150-3
Received by editor(s): October 13, 1997
Published electronically: March 16, 1999
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1999 American Mathematical Society