HELLY-TYPE THEOREMS FOR HOLLOW AXIS-ALIGNED BOXES

KONRAD J. SWANEPOEL

Abstract. A hollow axis-aligned box is the boundary of the cartesian product of d compact intervals in \mathbb{R}^d. We show that for $d \geq 3$, if any $2d$ of a collection of hollow axis-aligned boxes have non-empty intersection, then the whole collection has non-empty intersection; and if any 5 of a collection of hollow axis-aligned rectangles in \mathbb{R}^2 have non-empty intersection, then the whole collection has non-empty intersection. The values $2d$ for $d \geq 3$ and 5 for $d = 2$ are the best possible in general. We also characterize the collections of hollow boxes which would be counterexamples if $2d$ were lowered to $2d - 1$, and 5 to 4, respectively.

1. General notation and definitions

We denote the cardinality of a set S by $\#S$. Let $\Pi(S,k)$ denote the property that any subcollection of S of at most k sets has non-empty intersection (where k is any positive integer), and $\Pi(S)$ the property that S has non-empty intersection. For any set $S \subseteq \mathbb{R}^d$, we denote the convex hull, interior and boundary by $\text{co}S$, $\text{int}S$ and $\text{bd}S$, respectively. An axis-aligned box in \mathbb{R}^d is the cartesian product of d compact intervals, i.e. a set of the form

$$\prod_{i=1}^{d} [a_i, b_i] = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : a_i \leq x_i \leq b_i, i = 1, \ldots, d\} \quad (a_i < b_i).$$

An axis-aligned hollow box in \mathbb{R}^d is the boundary of a box, i.e. a set of the form

$$\text{bd} \prod_{i=1}^{d} [a_i, b_i] \quad (a_i < b_i).$$

In the rest of the paper, the word axis-aligned is implicit whenever we refer to boxes or hollow boxes. In the next section we state our results (Theorems 1 and 2), together with examples showing that they are the best possible. In Section 3 we derive a combinatorial lemma needed in the proofs of these theorems in Section 4.
2. HELLY-TYPE THEOREMS

A Helly-type theorem may be loosely described as an analogue of

Helly’s Theorem ([6]). Let S be a collection of convex sets in \mathbb{R}^d that is finite or contains at least one compact set. Then

$$\Pi(S, d+1) \implies \Pi(S).$$

There is an abundance of literature on Helly-type theorems; see the surveys [1, 3, 5]. Most of these analogues consider collections of *convex* sets, exactly as in Helly’s Theorem. Here are two examples where non-convex sets are considered.

Theorem (Motzkin [8, 2]). Let S be a collection of sets in \mathbb{R}^d, each of which is the set of common zeroes of a set of real polynomials in d variables of degree at most k. Then

$$\Pi(S, (\binom{d+k}{k})) \implies \Pi(S).$$

Theorem (Maehara [7, 4]). Let S be a collection of at least $d+3$ euclidean spheres in \mathbb{R}^d. Then

$$\Pi(S, d+1) \implies \Pi(S).$$

In both of these theorems the sets are algebraic. In this paper we find Helly-type theorems for certain non-algebraic sets, namely hollow boxes. It is well known (and immediately follows from the one-dimensional Helly Theorem) that for any collection S of boxes in \mathbb{R}^d,

$$\Pi(S, 2) \implies \Pi(S).$$

If we want the boxes to intersect only in their boundaries, then the value 2 has to be greatly enlarged, as the following examples show.

Example 1. A class of collections S of hollow boxes in \mathbb{R}^d such that $\Pi(S, 2d)$ holds, but not $\Pi(S, 2d+1)$.

Choose any box $B = \prod_{i=1}^d [x_i^0, x_i^1]$ (where $x_i^0 < x_i^1$), and $p = (p_1, \ldots, p_d) \in \text{int } B$. For $i = 1, \ldots, d$ and $j = 0, 1$, let F_i^j denote the facet of B contained in the hyperplane $\{x \in \mathbb{R}^d : x_i = x_i^j\}$. Let S be any collection of hollow boxes such that

1. $\text{bd } B \in S$,
2. $p \in D$ for all $D \in S \setminus \{\text{bd } B\}$,
3. for each $D \in S \setminus \{\text{bd } B\}$ there is a facet of B contained in D,
4. for each facet F of B there exists some $D \in S \setminus \{\text{bd } B\}$ such that $F \subseteq D$.

It is clear that there exist such collections S (even infinite ones, provided that $d \neq 1$). Note that the facet in (3) is unique, by (2). See Figure 1 for an example in \mathbb{R}^2.

Choose any subcollection $T \subseteq S$ of $2d$ hollow boxes. If $\text{bd } B \not\in T$, then by (2), $\bigcap_{D \in T} D \neq \emptyset$. Otherwise, by (3), there is a facet of B not contained in any $D \in T \setminus \{\text{bd } B\}$, say F_1^0. Then it easily follows from (2) and (3) that $(x_i^0, p_2, p_3, \ldots, p_d) \in \bigcap_{D \in T} D$. It follows that $\Pi(S, 2d)$ holds.

Secondly, use (4) to choose for each facet F_i^j of B a $D_i^j \in S$ containing F_i^j. Then $F_i^{1-j} \cap D_i^j = \emptyset$ by (2). It follows that $(\text{bd } B) \cap \bigcap_{i=1}^d (D_i^0 \cap D_i^1) = \emptyset$, and $\Pi(S, 2d+1)$ does not hold.
Example 2. A class of collections \mathbf{S} of hollow boxes in \mathbb{R}^d such that $\Pi(\mathbf{S}, 2^d - 1)$ holds, but not $\Pi(\mathbf{S}, 2^d)$.

Let $B = \prod_{i=1}^{d} [x_0^i, x_1^i]$ $(x_0^i < x_1^i)$, and let \mathbf{S} be any collection of hollow boxes such that

(5) $B \subseteq \operatorname{co} D$ for all $D \in \mathbf{S}$,

(6) for each vertex v of B there exists a $D \in \mathbf{S}$ not containing v,

(7) each $D \in \mathbf{S}$ contains all the vertices of B except at most one.

Thus it is clear there exist such collections, even infinite ones. See Figure 2 for an example in \mathbb{R}^2. Given a subcollection of $2^d - 1$ hollow boxes, then by (7) some vertex of B is contained in all these boxes. Thus $\Pi(\mathbf{S}, 2^d - 1)$ holds.

Secondly, (6) gives a subcollection of 2^d boxes D_v with $v \notin D_v$. But then, also using (5), it follows from Lemma 4.2 that for any vertex w of B, $\bigcap_{v \neq w} D_v = \{w\}$. Thus, $\bigcap_v D_v = \emptyset$, and $\Pi(\mathbf{S}, 2^d)$ does not hold.

The following two theorems show that the collections in Example 1 in the case $d = 2$, and the collections in Example 2 in the case $d \geq 3$ are the worst cases.

Theorem 1. Let \mathbf{S} be a collection of hollow boxes in \mathbb{R}^2. Then

$$\Pi(\mathbf{S}, 5) \implies \Pi(\mathbf{S}).$$
We first show that any minimal cover C matches 0 or 1. A cover C is a collection in \mathbb{R}^d such that any string $\varepsilon \in \Pi(S)$, with equality if $C = \{0, 1\}^d$. Then $\Pi(S)$ is a cover of $\{0, 1\}^d$ such that no proper subset of C is a cover of $\{0, 1\}^d$.

Lemma 1. Let C be a minimal cover of $\{0, 1\}^d$. Then, for each $i = 1, \ldots, d$, $E_i := \{\varepsilon \in \varepsilon_1 \ldots \varepsilon_d \in C \} \text{ is equal to either } \{\ast\}, \{0, 1\} \text{ or } \{0, 1, \ast\}$. Let $s := \#(i : E_i = \{\ast\}).$ Then $\#C \leq 2^{d-s},$ with equality iff $C = \{\varepsilon : \varepsilon_i = \ast \text{ for all } i \in J\}$ for some $J \subseteq \{1, 2, \ldots, d\}$ with $\#J = s$.

Proof. We first show that any minimal cover C satisfies $\#C \leq 2^d$, with equality if $C = \{0, 1\}^d$. For each pattern $\rho \in C$, the set $C \setminus \{\rho\}$ is not a cover of $\{0, 1\}^d$, and there exists a string $\varepsilon_\rho \in \{0, 1\}^d$ that matches ρ but does not match any other pattern in C. Thus

$$\phi : C \to \{0, 1\}^d, \rho \mapsto \varepsilon_\rho$$

is an injection, and $\#C \leq 2^d$. If equality holds, ϕ is a bijection, and any string in $\{0, 1\}^d$ matches a unique pattern in C. Thus C defines a partition of $\{0, 1\}^d$: a block of the partition consists of all strings matching a given pattern in C. Since there are 2^d blocks, each block must contain exactly 1 element. Thus no pattern in C contains a \ast, and $C = \{0, 1\}$.

Secondly, we show that if 0 does not occur in the first position of any string in C, there are only \ast’s in the first position. Let $C^* = \{\varepsilon_2 \ldots \varepsilon_n : \ast \varepsilon_2 \ldots \varepsilon_n \in C\}$. It is easily seen that C^* is a cover for $\{0, 1\}^{d-1}$. For any $\varepsilon \in \{0, 1\}^{d-1}$, 0ε matches some pattern in C starting with \ast. But then, by putting back \ast in the first position of every pattern in C^*, we already obtain a cover of $\{0, 1\}^d$. Thus, 1 does not occur in the first position in any string in C. Similarly, if 1 does not occur in the first position, then there are again only \ast’s in the first position.
Finally, to complete the proof, delete the positions for which \(E_i = \{ \} \), to obtain \(C' \subseteq \{0, 1, \}^{d-s} \). Then \(C' \) is clearly a minimal cover of \(\{0, 1\}^{d-s} \), and \(\#C = \#C' \). Now apply the first part of the proof.

We omit the proof of the following elementary inequality.

Lemma 2. Let \(d \geq s \geq 0 \) be integers. Then \(2^{d-s} < 2^d - 2s \), except in the following cases:

1. If \((d, s) = (1, 1) \) or \((d, s) = (2, 2) \), the opposite inequality holds.
2. If \(s = 0\), or \((d, s) = (2, 1) \), there is equality.

Proof. It is easy to check everything for \(d = 1 \) and \(d = 2 \): The only minimal covers for \(d = 1 \) are \(\{ \} \) and \(\{0, 1\} \), and for \(d = 2 \), are equivalent (up to permutation of the positions, and interchange of 0 and 1) to one of

\[
\{\}, \{0, 1\}, \{0, 10, 11\}, \{0, 01, 11\}.
\]

For \(d \geq 3 \), if \(s \geq 1 \), then \(\#C \leq 2^{d-s} < 2^d - 2s \), by Lemmas 1 and 2. Otherwise, \(s = 0\), and by Lemma 1, \(\#C < 2^d \) unless \(C = \{0, 1\}^d \).

4. Proofs of Theorems 1 and 2

We first prove a rather technical lemma, which gives some insight into the (not easily visualizable) intersections of hollow boxes.

Lemma 4. Let \(B = \prod_{i=1}^{d} [x^i_1, x^i_2, \ldots, x^i_{d_i}] \), with \(x^i_0 \leq x^i_1 \) for each \(i = 1, \ldots, d \). (Thus \(B \) is not necessarily full-dimensional.) For each string \(\epsilon \in \{0, 1\}^d \), let \(x_\epsilon := (x^{\epsilon_1}_1, x^{\epsilon_1}_2, \ldots, x^{\epsilon_1}_d) \), and let \(D_\epsilon \) be a hollow box such that \(x_{\epsilon'} \notin D_\epsilon \) and \(B \subseteq \text{co} D_\epsilon \).

Then,

1. \(B \cap \bigcap_\epsilon D_\epsilon = \emptyset \),
2. for any \(\gamma \in \{0, 1\}^d \), \(B \cap \bigcap_{\gamma \neq \epsilon} D_\epsilon \subseteq \{x_\gamma\} \),
3. for any \(\gamma, \delta \in \{0, 1\}^d \),

\[
B \cap \bigcap_{\epsilon \neq \gamma, \delta} D_\epsilon \subseteq \begin{cases} \text{co}\{x_\gamma, x_\delta\} & \text{if } x_\gamma \text{ and } x_\delta \text{ differ in exactly one coordinate}, \\
\{x_\gamma, x_\delta\} & \text{otherwise}.
\end{cases}
\]

Proof. Clearly, part 1 follows from part 2: If \(B \) is a single point, each \(D_\epsilon \) is disjoint from \(B \). Otherwise, choose \(\gamma, \gamma' \) such that \(x_\gamma \neq x_{\gamma'} \). Then, by part 2, \(B \cap \bigcap_\epsilon D_\epsilon = \emptyset \).

Although part 2 also easily follows from part 3, we first prove part 2, as it clears the way for a proof of part 3. For each \(\epsilon \), write \(D_\epsilon = \text{bd} \prod_{i=1}^{d} [a^\epsilon_i, b^\epsilon_i] \). Let \(x = (x_1, x_2, \ldots, x_d) \in B \cap \bigcup_{\epsilon \neq \gamma} D_\epsilon \). Then \(x^0_i \leq x_1 \leq x^1_i \) for each \(i \). Define \(\epsilon_i \) by

\[
\epsilon_i := \begin{cases} \gamma_i & \text{if } x_i = x^{\gamma_i}_i, \\
1 - \gamma_i & \text{otherwise}.
\end{cases}
\]

Since \(x_\epsilon \subseteq B \subseteq \text{co} D_\epsilon \), but \(x_\epsilon \notin D_\epsilon \), we have \(a^\epsilon_i \leq x^0_i \leq x^1_i \leq b^\epsilon_i \) and \(a^\epsilon_i < x^{\gamma_i}_i < b^\epsilon_i \) for all \(i \). If \(\epsilon_i = \gamma_i \), then \(x^{\epsilon_i}_i = x^{\gamma_i}_i = x_i \). If \(\epsilon_i = 1 - \gamma_i \), then \(x_i \neq x^{\gamma_i}_i \), and either
\[\gamma_i = 1 \text{ and } x_i^\gamma_i = x_i^0 \leq x_i < x_i^1, \text{ or } \gamma_i = 0 \text{ and } x_i^\gamma_i = x_i^1 \geq x_i > x_i^0. \] In all cases, \(a_i^\gamma_i < x_i < b_i^\gamma_i, \) and it follows that \(x \not\in D_\varepsilon. \) Thus \(\varepsilon = \gamma, \) and \(x_i = x_i^{\gamma_i} \) for all \(i. \) It follows that \(x = x_\gamma. \)

Now let \(x \in B \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_\varepsilon, \) and suppose \(x \neq x_\gamma, x_\delta. \) Let \(j \) be any position such that \(x_j \neq x_j^{\gamma_j}. \) Define \(\varepsilon \) by

\[
\varepsilon_i := \begin{cases}
1 - \gamma_i & \text{if } i = j, \\
\delta_i & \text{if } x_i = x_i^{\delta_i}, i \neq j, \\
1 - \delta_i & \text{if } x_i \neq x_i^{\delta_i}, i \neq j.
\end{cases}
\]

As in the proof of part 2, for each \(i \) we obtain \(a_i^\varepsilon < x_i < b_i^\varepsilon, \) and therefore, \(x \not\in D_\varepsilon. \) Thus, \(\varepsilon = \gamma \) or \(\varepsilon = \delta. \) But, since \(\varepsilon_j \neq \gamma_j, \) we must have \(\varepsilon = \delta. \) Thus, \(\gamma_j = 1 - \delta_j, \) and for all \(i \neq j, x_i = x_i^{\delta_i}. \) Since \(x \neq x_\delta, \) we then must have \(x_j \neq x_j^{\delta_j}. \) By repeating the above argument with \(x_\delta \) instead of \(x_\gamma, \) we also obtain that for all \(i \neq j, x_i = x_i^{\gamma_i}. \) It follows that \(x \in \text{co}\{x_\gamma, x_\delta\}, \) and \(x_\gamma \) and \(x_\delta \) differ in only one coordinate.

Proof of Theorem 2. Note that the first part of the theorem follows from the second part, since \(\Pi(S, 2^d) \) does not hold in Example 2. By compactness, we only have to prove the theorem for finite \(S. \) We assume that \(\Pi(S, 2^d - 1). \) Let \(B = \bigcap_{D \in S} \text{co } D = \prod_{i=1}^d [a_i^0, b_i^0]. \) (Since any two \(D \)'s intersect, \(x_i^0 \leq x_i^1 \) for all \(i.) \) We denote the vertices of \(B \) by \(x_\varepsilon, \varepsilon \in \{0, 1\}^d, \) as in Lemma 4. We now show that if \(x_\varepsilon \not\in \bigcap_{D \in S} D \) for all \(\varepsilon, \) then \(S \) is as in Example 2.

For each \(\varepsilon, \) choose \(D_\varepsilon = \text{bd} \prod_{i=1}^d [a_i^\varepsilon, b_i^\varepsilon] \in S \text{ such that } x_\varepsilon \not\in D_\varepsilon, \) and let

\[X_\varepsilon := \{x_\delta : \delta \in \{0, 1\}^d, x_\delta \not\in D_\varepsilon\}. \]

Then \(X_\varepsilon = \{x_\delta : \delta \text{ matches } \rho_\varepsilon\}, \) where \(\rho_\varepsilon = \rho_1 \ldots \rho_d \) is the pattern defined by

\[
\rho_i := \begin{cases}
0 & \text{if } a_i^\varepsilon < x_i^0 \text{ and } x_i^1 = b_i^\varepsilon, \\
1 & \text{if } a_i^\varepsilon = x_i^0 \text{ and } x_i^1 < b_i^\varepsilon, \\
* & \text{if } a_i^\varepsilon < x_i^0 \text{ and } x_i^1 < b_i^\varepsilon.
\end{cases}
\]

Thus \(C := \{\rho_\varepsilon : \varepsilon \in \{0, 1\}^d\} \) is a cover of \(\{0, 1\}^d. \) If \(\rho_\varepsilon = \rho_\varepsilon', \) then \(x_\varepsilon \neq x_\varepsilon' \not\in D_\varepsilon, \) so we may choose the \(D_\varepsilon \)'s such that if \(\rho_\varepsilon = \rho_\varepsilon', \) then \(D_\varepsilon = D_\varepsilon'. \) We now write \(D_\rho \) for \(D_\varepsilon \) whenever \(\rho = \rho_\varepsilon \in C. \) Let \(C' \) be a minimal cover contained in \(C. \) For each \(\varepsilon \in \{0, 1\}^d \) there now exists a \(\rho \in C' \) matching \(\varepsilon \) such that \(x_\varepsilon \not\in D_\rho. \) Applying Lemma 4.1 to \(\{D_\rho : \rho \in C'\}, \) we find \(B \cap \bigcap_{\rho} D_\rho = \emptyset. \) Let \(J \subseteq \{1, \ldots, d\} \) be the set of positions in which there are only *’s in \(C'. \) For each \(j \in J, \) choose \(D_j^0 = \text{bd} \prod_{i \neq j} [r_j^0, s_j^0] \) and \(D_j^1 = \text{bd} \prod_{i \neq j} [r_j^1, u_j^1] \) from \(S \) such that \(r_j^0 = x_j^0 \) and \(u_j^1 = x_j^1 \) (which is possible since \(S \) is finite). Since (by Lemma 1) for each \(i \not\in J \) there exist \(\rho, \rho' \in C' \) such that \(\rho_i = 0 \) and \(\rho'_i = 1, \) we obtain

\[\bigcap_{j \in J} \left(\text{co } D_j^0 \cap \text{co } D_j^1 \right) \cap \bigcap_{\rho \in C'} \text{co } D_\rho = B. \]

Thus, letting \(T := \{D_\rho : \rho \in C' \} \cup \{D_j^0, D_j^1 : j \in J\}, \) we obtain \(\bigcap_{D \in T} D = \emptyset. \) Thus, \(\# T \geq 2^d. \) Also, \(\# T \leq \# C' + 2 \# J. \) Thus, by Lemma 3, \(C' = \{0, 1\}^d. \) It follows that \(x_\varepsilon \not\in D_\varepsilon \) iff \(\varepsilon = \varepsilon. \) Thus, all \(x_i \)'s are distinct, and \(B \) is full-dimensional. Also, \(J = \emptyset \) and \(B = \bigcap_{\rho \in C'} \text{co } D_\rho. \) In fact, if we take any \(\varepsilon \) and \(\varepsilon' \) which differ in each position, then \(B = \text{co } D_\varepsilon \cap \text{co } D_{\varepsilon'}. \)
We already have that \(S \) satisfies (5) and (6) in Example 2. Consider any \(D \in S \) with \(D \neq D_x \) for all \(x \). Suppose there exist distinct \(\gamma, \delta \) such that \(x_\gamma, x_\delta \notin D \). By Lemma 4.3, \(D \cap B \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_\varepsilon = \emptyset \). But there exist \(\varepsilon, \varepsilon' \notin \{\gamma, \delta\} \) differing in each position. Thus \(\bigcap_{\varepsilon \neq \gamma, \delta} D_\varepsilon \subseteq B \), and \(D \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_\varepsilon = \emptyset \), contradicting \(\Pi(S, 2^d - 1) \). Thus \(D \) contains all \(x_\gamma \)'s, except at most one and (7) is satisfied.

Proof of Theorem 1. Proceeding as in the proof of Theorem 2, we assume that \(\Pi(S, 4) \) holds and that no vertex of \(B \) is in \(\bigcap_{D \in S} D \), and obtain \(C' = \{**\} \) and \# \(T = 5 \).

We now show that \(S \) is as in Example 1. Since \(C' = \{**\} \), there is only one \(D_p \), say \(D = D_{**} \), which is disjoint from \(B \). Also, \(T = \{D_0^1, D_1^1, D_2^1, D_3^1, D\} \), with the \(D_j^i \)'s as in the proof of Theorem 2. Thus \(\bigcap_{i,j} \text{co} D_j^i = B \).

Suppose that for each \(\varepsilon \in \{0, 1\}^2 \) there exists a \(D_j^i \) not containing \(x_\varepsilon \). Then by Lemma 4.1, \(\bigcap_{i,j} D_j^i = \emptyset \), contradicting \(\Pi(S, 4) \). Thus, some \(x_\varepsilon \in \bigcap_{i,j} D_j^i \), say \(x_{00} \).

Suppose that \(B \) is two-dimensional, i.e. \(x_0^1 < x_1^1 \) and \(x_2^0 < x_3^0 \). Then, since \(x_{00} \in D_1^1 \) \(D_1^1 \) contains at least two sides of \(B \), and it follows that \(B = \text{co} D_1^1 \cap \text{co} D_2^1 \) or \(B = \text{co} D_1^1 \cap \text{co} D_0^1 \cap \text{co} D_1^1 \). Thus

\[
D_1^1 \cap D_0^1 \cap D_2^1 \cap D = \emptyset \quad \text{or} \quad D_1^1 \cap D_0^1 \cap D_1^1 \cap D = \emptyset,
\]

both cases contradicting \(\Pi(S, 4) \).

Suppose \(B \) is one-dimensional, say \(x_0^1 < x_1^1 \) and \(x_2^0 = x_3^0 \). Then \(D_0^1 \cap D_1^1 \) is a horizontal segment containing \(B \). If \(D_1^1 \) intersects \(D_0^1 \cap D_2^1 \) only in \(x_{00} \) and \(x_{10} \), then \(D_1^1 \cap D_0^1 \cap D_2^1 \cap D = \emptyset \), a contradiction. Thus, \(B \subseteq D_1^1 \). We may assume that \(D_2^1 \) and \(D_1^1 \) are on opposite sides of \(B \) (otherwise consider \(D_2^1 \) and \(D_1^1 \)). Then

\[
D_1^1 \cap D_1^1 \cap D_2^1 \subseteq B \quad \text{and} \quad D_0^1 \cap D_1^1 \cap D_2^1 \cap D = \emptyset,
\]
a contradiction.

Thus \(B \) is zero-dimensional, say \(B = \{p\} \), where \(p = x_{00} = (x_1, x_2) \) and \(x_1 = x_0^1, x_2 = x_1^1, x_0 = x_3^0 \). Then \(D_0^1 \cap D_1^1 \) is a vertical line segment through \(p \) which must intersect \(D_0^1 \cap D \) in a point \(b \neq p \), and \(D_2^1 \cap D \) in a point \(a \neq p \). Similarly, \(D_0^1 \cap D_0^1 \) is a horizontal segment through \(p \) which must intersect \(D_0^1 \cap D \) in a point \(d \neq p \), and \(D_1^1 \cap D \) in a point \(c \neq p \). See Figure 3. Now \(S \) already satisfies (1) and (4) of Example 1, if we take \(B \) there as \(\text{co} D \).

Consider any \(E \in S \setminus T \). By considering the intersection of three sets at a time from \(T \), we see that \(E \) must intersect each of the sets \(\{a, b\}, \{c, d\}, \{p, a\}, \{p, b\}, \{p, c\}, \{p, d\} \). If \(p \notin E \), then \(a, b, c, d \in E \), and \(E = D \), a contradiction.

Thus \(p \in E \), and (2) is satisfied. Also, \(a \in E \) or \(b \in E \). We may assume without loss that \(a \in E \), and similarly, \(c \in E \). But then, since \(E \cap D \cap D_0^1 \cap D_1^1 \neq \emptyset \), we
must have either \(b \in E \) or \(d \in E \), and (3) is satisfied. It follows that \(S \) is as in Example 1.

\[\square \]

Acknowledgement

This paper is based on part of the author’s Ph.D. thesis written under supervision of Professor W. L. Fouché at the University of Pretoria. I thank the referee for pointing out a few small errors in a previous version of this paper.

References

