Dehn surgery on the figure 8 knot:

Immersed surfaces

Authors:
I. R. Aitchison, S. Matsumoto and J. H. Rubinstein

Journal:
Proc. Amer. Math. Soc. **127** (1999), 2437-2442

MSC (1991):
Primary 57Q35; Secondary 57M50

Published electronically:
March 24, 1999

MathSciNet review:
1485454

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that about 70% of surgeries on the figure 8 knot give manifolds which contain immersed incompressible surfaces. We improve this to about 80% by giving a very simple proof that all even surgeries give manifolds containing such a surface. Moreover, we give a quick proof that every surgery is virtually Haken, thereby partially dealing with some exceptional cases in Baker's results.

**[ALR]**I. R. Aitchison, E. Lumsden, and J. H. Rubinstein,*Cusp structures of alternating links*, Invent. Math.**109**(1992), no. 3, 473–494. MR**1176199**, 10.1007/BF01232034**[AMR1]**I. R. Aitchison, S. Matsumoto, and J. H. Rubinstein,*Immersed surfaces in cubed manifolds*, Asian J. Math**1**(1997), 85-95. CMP**98:04****[AMR2]**-,*Immersed surfaces in the figure-8 knot complement*, preprint, 1996.**[AR]**I. R. Aitchison and J. H. Rubinstein,*Combinatorial cubings, cusps, and the dodecahedral knots*, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 17–26. MR**1184399****[Ba]**Mark D. Baker,*On coverings of figure eight knot surgeries*, Pacific J. Math.**150**(1991), no. 2, 215–228. MR**1123440****[Bu]**Gerhard Burde,*On branched coverings of 𝑆³*, Canad. J. Math.**23**(1971), 84–89. MR**0281189****[Fo1]**R. H. Fox,*Construction of simply connected 3-manifolds*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 213–216. MR**0140116****[Fo2]**R. H. Fox,*Metacyclic invariants of knots and links*, Canad. J. Math.**22**(1970), 193–201. MR**0261584****[HM]**J. Hass and W. Menasco,*Topologically rigid non-Haken 3-manifolds*, J. Austral. Math. Soc. Ser. A**55**(1993), no. 1, 60–71. MR**1231694****[Ha]**Allen Hatcher,*Hyperbolic structures of arithmetic type on some link complements*, J. London Math. Soc. (2)**27**(1983), no. 2, 345–355. MR**692540**, 10.1112/jlms/s2-27.2.345**[He1]**John Hempel,*Coverings of Dehn fillings of surface bundles*, Topology Appl.**24**(1986), no. 1-3, 157–170. Special volume in honor of R. H. Bing (1914–1986). MR**872487**, 10.1016/0166-8641(86)90058-1**[Ki]**R.C. Kirby (ed.),*Problems in low-dimensional topology*, in: Geometric Topology (2 vols), 1993 Georgia International Topology Conference Proceedings (ed. William H. Kazez) (American Mathematical Society, Providence, 1997). CMP**98:01****[KL]**S. Kojima and D. D. Long,*Virtual Betti numbers of some hyperbolic 3-manifolds*, A fête of topology, Academic Press, Boston, MA, 1988, pp. 417–437. MR**928410****[Mo]**Shigeyuki Morita,*Finite coverings of punctured torus bundles and the first Betti number*, Sci. Papers College Arts Sci. Univ. Tokyo**35**(1986), no. 2, 109–121. MR**847882****[NR]**Walter D. Neumann and Alan W. Reid,*Arithmetic of hyperbolic manifolds*, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310. MR**1184416****[N]**Andrew J. Nicas,*An infinite family of non-Haken hyperbolic 3-manifolds with vanishing Whitehead groups*, Math. Proc. Cambridge Philos. Soc.**99**(1986), no. 2, 239–246. MR**817665**, 10.1017/S030500410006415X**[Pr]**Józef H. Przytycki,*Incompressibility of surfaces after Dehn surgery*, Michigan Math. J.**30**(1983), no. 3, 289–308. MR**725782**, 10.1307/mmj/1029002906**[Re]**Alan W. Reid,*Arithmeticity of knot complements*, J. London Math. Soc. (2)**43**(1991), no. 1, 171–184. MR**1099096**, 10.1112/jlms/s2-43.1.171**[Ro]**Dale Rolfsen,*Knots and links*, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR**1277811****[Th1]**W.P. Thurston,*The geometry and topology of 3-manifolds*, Princeton University Lecture Notes, 1978.**[Th2]**William P. Thurston,*Three-dimensional geometry and topology. Vol. 1*, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR**1435975**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57Q35,
57M50

Retrieve articles in all journals with MSC (1991): 57Q35, 57M50

Additional Information

**I. R. Aitchison**

Affiliation:
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Email:
iain@maths.mu.oz.au

**S. Matsumoto**

Affiliation:
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Email:
saburo@is.titech.ac.jp

**J. H. Rubinstein**

Affiliation:
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Email:
rubin@maths.mu.oz.au

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04716-4

Keywords:
Cubed manifolds,
immersed incompressible surfaces,
dihedral cover,
Dehn surgery

Received by editor(s):
November 12, 1996

Received by editor(s) in revised form:
October 21, 1997

Published electronically:
March 24, 1999

Additional Notes:
This research was partially supported by the Australian Research Council.

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1999
American Mathematical Society