Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Codimension 1 linear isometries
on function algebras


Authors: Jesús Araujo and Juan J. Font
Journal: Proc. Amer. Math. Soc. 127 (1999), 2273-2281
MSC (1991): Primary 47B38, 46J10; Secondary 46E25
DOI: https://doi.org/10.1090/S0002-9939-99-04718-8
Published electronically: March 23, 1999
MathSciNet review: 1485456
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a function algebra on a locally compact Hausdorff space. A linear isometry $T:A\longrightarrow A$ is said to be of codimension $1$ if the range of $T$ has codimension $1$ in $A$. In this paper, we provide and study a classification of codimension 1 linear isometries on function algebras in general and on Douglas algebras in particular.


References [Enhancements On Off] (What's this?)

  • 1. J. Araujo and J.J. Font, Linear isometries between subspaces of continuous functions. Trans. Amer. Math. Soc. 349 (1997), 413-428. MR 97d:46026
  • 2. J. Araujo and J.J. Font, On Shilov boundaries for subspaces of continuous functions. Top. and its Appl. 77 (1997), 79-85. CMP 97:13
  • 3. R.M. Crownover, Commutants of shifts on Banach spaces. Michigan Math. J. 19 (1972), 233-247. MR 50:14288
  • 4. F.O. Farid and K. Varadajaran, Isometric shift operators on $C(X)$. Can. J. Math. 46 (3) (1994), 532-542. MR 97d:47034
  • 5. J.B. Garnett, Bounded Analytic Functions. Academic Press, (1981). MR 83g:30037
  • 6. R. Haydon, Isometric Shifts on $C(K)$. J. Funct. Anal. 135 (1996), 157-162. MR 97b:47028
  • 7. H. Holszty\'{n}ski, Continuous mappings induced by isometries of spaces of continuous functions. Studia Math. 26 (1966), 133-136. MR 33:1711
  • 8. J.R. Holub, On Shift Operators. Canad. Math. Bull. 31 (1988), 85-94. MR 89f:47041
  • 9. A. Gutek, D. Hart, J. Jamison and M. Rajagopalan, Shift Operators on Banach Spaces. J. Funct. Anal. 101 (1991), 97-119. MR 92g:47046
  • 10. N. K. Nikol'skii, Treatise on the shift operator. Springer-Verlag, (1986). MR 87i:47042
  • 11. C.E. Rickart, General Theory of Banach Algebras. Van Nostrand, Princeton, N.J., (1960). MR 22:5903
  • 12. M. Rajagopalan and K. Sundaresan, Backward shifts on Banach spaces $C(X)$. J. Math. Anal. Appl. 202 (1996), 485-491. MR 97h:47028

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B38, 46J10, 46E25

Retrieve articles in all journals with MSC (1991): 47B38, 46J10, 46E25


Additional Information

Jesús Araujo
Affiliation: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Facultad de Ciencias, Avda. de los Castros, s. n., E-39071 Santander, Spain
Email: araujo@matesco.unican.es

Juan J. Font
Affiliation: Departamento de Matemáticas, Universitat Jaume I, Campus Penyeta Roja, E-12071 Castellón, Spain
Email: font@mat.uji.es

DOI: https://doi.org/10.1090/S0002-9939-99-04718-8
Received by editor(s): November 19, 1996
Received by editor(s) in revised form: October 22, 1997
Published electronically: March 23, 1999
Additional Notes: Research of the first author was partially supported by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PB95-0582).
Research of the second author was partially supported by Fundació Caixa Castelló.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society