Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$\mathbb{N}$-compactness and automatic continuity
in ultrametric spaces
of bounded continuous functions

Author: Jesús Araujo
Journal: Proc. Amer. Math. Soc. 127 (1999), 2489-2496
MSC (1991): Primary 54C40, 46S10
Published electronically: April 15, 1999
MathSciNet review: 1487354
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper (weakly) separating maps between spaces of bounded continuous functions over a nonarchimedean field $\mathbb{K}$ are studied. It is proven that the behaviour of these maps when $\mathbb{K}$ is not locally compact is very different from the case of real- or complex-valued functions: in general, for $\mathbb{N}$-compact spaces $X$ and $Y$, the existence of a (weakly) separating additive map $T: C^* (X)\rightarrow C^* (Y)$ implies that $X$ and $Y$ are homeomorphic, whereas when dealing with real-valued functions, this result is in general false, and we can just deduce the existence of a homeomorphism between the Stone-Cech compactifications of $X$ and $Y$. Finally, we also describe the general form of bijective weakly separating linear maps and deduce some automatic continuity results.

References [Enhancements On Off] (What's this?)

  • [A] J. Araujo, Nonarchimedean \v{S}ilov boundaries and multiplicative isometries, Indag. Math., N. S. 8 (1997), 417-431. CMP 98:12
  • [ABN1] J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. App. 192 (1995), 258-265. MR 96b:46038
  • [ABN2] J. Araujo, E. Beckenstein and L. Narici, Separating maps and the nonarchimedean Hewitt theorem, Ann. Math. Blaise Pascal 2 (1995), 19-27. MR 96d:46099
  • [ABN3] J. Araujo, E. Beckenstein and L. Narici, When is a separating map biseparating?, Archiv Math. 67 (1996), 395-407. MR 97f:47026
  • [AF] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. A.M.S. 349 (1997), 413-428. MR 97d:46026
  • [BNT] E. Beckenstein, L. Narici and A. R. Todd, Automatic continuity of linear maps on spaces of continuous functions, Manuscripta Math. 62 (1988), 257-275. MR 89j:47020
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions. Van Nostrand, Princeton, 1960. MR 22:6994
  • [H] M. Henriksen, On the equivalence of the ring, lattice, and semigroup of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 959-960. MR 18:559a
  • [J] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139-144. MR 92j:46049
  • [vP] M. van der Put, Algèbres de fonctions continues $p$-adiques, Indag. Math. 30 (1968), 401-420. MR 39:784
  • [vR] A. C. M. van Rooij, Nonarchimedean Functional Analysis, Dekker, New York 1978. MR 81a:46084
  • [S] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50 (1974), 169-185. MR 49:5803

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54C40, 46S10

Retrieve articles in all journals with MSC (1991): 54C40, 46S10

Additional Information

Jesús Araujo
Affiliation: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria Facultad de Ciencias, Avda. de los Castros, s. n., E-39071 Santander, Spain

Keywords: $\mathbb{N}$-compact, weakly separating map, nonarchimedean field
Received by editor(s): July 20, 1997
Received by editor(s) in revised form: November 6, 1997
Published electronically: April 15, 1999
Additional Notes: Research supported in part by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PB95-0582).
Communicated by: Alan Dow
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society