Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Brownian space-time functions of zero quadratic variation depend only on time
HTML articles powered by AMS MathViewer

by P. J. Fitzsimmons PDF
Proc. Amer. Math. Soc. 127 (1999), 2423-2429 Request permission

Abstract:

Let $B_ t$, $t\ge 0$, be a $1$-dimensional Brownian motion and let $f\colon {\mathbb {R}}\times [0,\infty [ \to {\mathbb {R}}$ be a continuous function. We show that if $t\mapsto f(B_ t,t)$ is locally of zero quadratic variation, then $f(x,t)=f(0,t)$ for all $(x,t)\in {\mathbb {R}}\times [0,\infty [$. This result extends recent work of F. B. Knight, thereby confirming a conjecture of T. Salisbury.
References
  • Patrick J. Fitzsimmons, Even and odd continuous additive functionals, Dirichlet forms and stochastic processes (Beijing, 1993) de Gruyter, Berlin, 1995, pp. 139–154. MR 1366430
  • P. J. Fitzsimmons, Drift transformations of symmetric diffusions and duality, Preprint, 1997.
  • Hans Föllmer, Philip Protter, and Albert N. Shiryayev, Quadratic covariation and an extension of Itô’s formula, Bernoulli 1 (1995), no. 1-2, 149–169. MR 1354459, DOI 10.2307/3318684
  • Kiyosi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected. MR 0345224
  • F. B. Knight, On a Brownian motion problem of T. Salisbury, Canad. Math. Bull. 40 (1997), 67–71.
  • Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1994. MR 1303781
  • Thomas S. Salisbury, An increasing diffusion, Seminar on stochastic processes, 1984 (Evanston, Ill., 1984) Progr. Probab. Statist., vol. 9, Birkhäuser Boston, Boston, MA, 1986, pp. 173–194. MR 896729, DOI 10.1007/978-1-4684-6745-1_{1}1
  • Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics, vol. 133, Academic Press, Inc., Boston, MA, 1988. MR 958914
  • Hiroshi Tanaka, Note on continuous additive functionals of the $1$-dimensional Brownian path, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 251–257. MR 169307, DOI 10.1007/BF00532497
  • John B. Walsh, Markov processes and their functionals in duality, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 229–246. MR 329056, DOI 10.1007/BF00532535
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60J65, 60J55
  • Retrieve articles in all journals with MSC (1991): 60J65, 60J55
Additional Information
  • P. J. Fitzsimmons
  • Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093–0112
  • Email: pfitz@euclid.ucsd.edu
  • Received by editor(s): September 8, 1997
  • Received by editor(s) in revised form: October 24, 1997
  • Published electronically: March 23, 1999
  • Communicated by: Stanley Sawyer
  • © Copyright 1999 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 127 (1999), 2423-2429
  • MSC (1991): Primary 60J65; Secondary 60J55
  • DOI: https://doi.org/10.1090/S0002-9939-99-04794-2
  • MathSciNet review: 1487367