On the Witten-Reshetikhin-Turaev representations of mapping class groups

Author:
Patrick M. Gilmer

Journal:
Proc. Amer. Math. Soc. **127** (1999), 2483-2488

MSC (1991):
Primary 57M99

Published electronically:
April 15, 1999

MathSciNet review:
1487369

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a central extension of the mapping class group of a surface with a collection of framed colored points. The Witten-Reshetikhin-Turaev TQFTs associated to and induce linear representations of this group. We show that the denominators of matrices which describe these representations over a cyclotomic field can be restricted in many cases. In this way, we give a proof of the known result that if the surface is a torus with no colored points, the representations have finite image.

**[A]**Michael Atiyah,*The geometry and physics of knots*, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. MR**1078014****[BHMV]**C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel,*Topological quantum field theories derived from the Kauffman bracket*, Topology**34**(1995), no. 4, 883–927. MR**1362791**, 10.1016/0040-9383(94)00051-4**[F]**L. Funar,*TQFT representations of mapping class groups*, Preprint 1997.**[G1]**Patrick M. Gilmer,*Invariants for one-dimensional cohomology classes arising from TQFT*, Topology Appl.**75**(1997), no. 3, 217–259. MR**1430088**, 10.1016/S0166-8641(96)00090-9**[G2]**-,*Turaev-Viro Modules of Satellite Knots*, Knots 96 (S. Suzuchi, ed.), World Scientific, 1997, pp. 337-363.**[J]**Lisa C. Jeffrey,*Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation*, Comm. Math. Phys.**147**(1992), no. 3, 563–604. MR**1175494****[M1]**Hitoshi Murakami,*Quantum 𝑆𝑈(2)-invariants dominate Casson’s 𝑆𝑈(2)-invariant*, Math. Proc. Cambridge Philos. Soc.**115**(1994), no. 2, 253–281. MR**1277059**, 10.1017/S0305004100072078**[M2]**Hitoshi Murakami,*Quantum 𝑆𝑂(3)-invariants dominate the 𝑆𝑈(2)-invariant of Casson and Walker*, Math. Proc. Cambridge Philos. Soc.**117**(1995), no. 2, 237–249. MR**1307078**, 10.1017/S0305004100073084**[MR1]**G. Masbaum, J. Roberts,*A simple proof of integrality of quantum invariants at prime roots of unity*, Math. Proc. Camb. Phil Soc.**121**(1997), 443-454. CMP**97:08****[MR2]**G. Masbaum and J. D. Roberts,*On central extensions of mapping class groups*, Math. Ann.**302**(1995), no. 1, 131–150. MR**1329450**, 10.1007/BF01444490**[MS]**H. R. Morton and P. Strickland,*Jones polynomial invariants for knots and satellites*, Math. Proc. Cambridge Philos. Soc.**109**(1991), no. 1, 83–103. MR**1075123**, 10.1017/S0305004100069589**[Q]**Frank Quinn,*Lectures on axiomatic topological quantum field theory*, Geometry and quantum field theory (Park City, UT, 1991) IAS/Park City Math. Ser., vol. 1, Amer. Math. Soc., Providence, RI, 1995, pp. 323–453. MR**1338394****[RT]**N. Reshetikhin and V. G. Turaev,*Invariants of 3-manifolds via link polynomials and quantum groups*, Invent. Math.**103**(1991), no. 3, 547–597. MR**1091619**, 10.1007/BF01239527**[S]**Pierre Samuel,*Algebraic theory of numbers*, Translated from the French by Allan J. Silberger, Houghton Mifflin Co., Boston, Mass., 1970. MR**0265266****[T]**V. G. Turaev,*Quantum invariants of knots and 3-manifolds*, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR**1292673****[Wa]**K. Walker,*On Witten's 3-manifold invariants*, preprint, 1991.**[Wall]**C. T. C. Wall,*Non-additivity of the signature*, Invent. Math.**7**(1969), 269–274. MR**0246311****[W]**Edward Witten,*Quantum field theory and the Jones polynomial*, Comm. Math. Phys.**121**(1989), no. 3, 351–399. MR**990772****[Wr1]**Gretchen Wright,*The Reshetikhin-Turaev representation of the mapping class group*, J. Knot Theory Ramifications**3**(1994), no. 4, 547–574. MR**1304402**, 10.1142/S021821659400040X**[Wr2]**Gretchen Wright,*The Reshetikhin-Turaev representation of the mapping class group at the sixth root of unity*, J. Knot Theory Ramifications**5**(1996), no. 5, 721–739. MR**1414096**, 10.1142/S0218216596000412

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57M99

Retrieve articles in all journals with MSC (1991): 57M99

Additional Information

**Patrick M. Gilmer**

Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Email:
gilmer@math.lsu.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04796-6

Keywords:
Mapping class group,
TQFT

Received by editor(s):
June 23, 1997

Received by editor(s) in revised form:
November 5, 1997

Published electronically:
April 15, 1999

Additional Notes:
This research was partially supported by a grant from the Louisiana Education Quality Support Fund.

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1999
American Mathematical Society